YES We show the termination of the TRS R: active(f(f(X))) -> mark(c(f(g(f(X))))) active(c(X)) -> mark(d(X)) active(h(X)) -> mark(c(d(X))) mark(f(X)) -> active(f(mark(X))) mark(c(X)) -> active(c(X)) mark(g(X)) -> active(g(X)) mark(d(X)) -> active(d(X)) mark(h(X)) -> active(h(mark(X))) f(mark(X)) -> f(X) f(active(X)) -> f(X) c(mark(X)) -> c(X) c(active(X)) -> c(X) g(mark(X)) -> g(X) g(active(X)) -> g(X) d(mark(X)) -> d(X) d(active(X)) -> d(X) h(mark(X)) -> h(X) h(active(X)) -> h(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(f(X))) -> mark#(c(f(g(f(X))))) p2: active#(f(f(X))) -> c#(f(g(f(X)))) p3: active#(f(f(X))) -> f#(g(f(X))) p4: active#(f(f(X))) -> g#(f(X)) p5: active#(c(X)) -> mark#(d(X)) p6: active#(c(X)) -> d#(X) p7: active#(h(X)) -> mark#(c(d(X))) p8: active#(h(X)) -> c#(d(X)) p9: active#(h(X)) -> d#(X) p10: mark#(f(X)) -> active#(f(mark(X))) p11: mark#(f(X)) -> f#(mark(X)) p12: mark#(f(X)) -> mark#(X) p13: mark#(c(X)) -> active#(c(X)) p14: mark#(g(X)) -> active#(g(X)) p15: mark#(d(X)) -> active#(d(X)) p16: mark#(h(X)) -> active#(h(mark(X))) p17: mark#(h(X)) -> h#(mark(X)) p18: mark#(h(X)) -> mark#(X) p19: f#(mark(X)) -> f#(X) p20: f#(active(X)) -> f#(X) p21: c#(mark(X)) -> c#(X) p22: c#(active(X)) -> c#(X) p23: g#(mark(X)) -> g#(X) p24: g#(active(X)) -> g#(X) p25: d#(mark(X)) -> d#(X) p26: d#(active(X)) -> d#(X) p27: h#(mark(X)) -> h#(X) p28: h#(active(X)) -> h#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p5, p7, p10, p12, p13, p14, p15, p16, p18} {p21, p22} {p19, p20} {p23, p24} {p25, p26} {p27, p28} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(f(X))) -> mark#(c(f(g(f(X))))) p2: mark#(h(X)) -> mark#(X) p3: mark#(h(X)) -> active#(h(mark(X))) p4: active#(h(X)) -> mark#(c(d(X))) p5: mark#(d(X)) -> active#(d(X)) p6: active#(c(X)) -> mark#(d(X)) p7: mark#(g(X)) -> active#(g(X)) p8: mark#(c(X)) -> active#(c(X)) p9: mark#(f(X)) -> mark#(X) p10: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{19, x1 - 3} f_A(x1) = x1 + 29 mark#_A(x1) = max{19, x1 - 3} c_A(x1) = max{21, x1 - 12} g_A(x1) = x1 + 12 h_A(x1) = max{21, x1} mark_A(x1) = x1 d_A(x1) = 20 active_A(x1) = x1 precedence: active# = f = mark# = c = g = h = mark = d = active partial status: pi(active#) = [] pi(f) = [] pi(mark#) = [] pi(c) = [] pi(g) = [1] pi(h) = [] pi(mark) = [1] pi(d) = [] pi(active) = [1] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(f(X))) -> mark#(c(f(g(f(X))))) p2: mark#(h(X)) -> mark#(X) p3: mark#(h(X)) -> active#(h(mark(X))) p4: active#(h(X)) -> mark#(c(d(X))) p5: mark#(d(X)) -> active#(d(X)) p6: active#(c(X)) -> mark#(d(X)) p7: mark#(g(X)) -> active#(g(X)) p8: mark#(c(X)) -> active#(c(X)) p9: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(f(X))) -> mark#(c(f(g(f(X))))) p2: mark#(f(X)) -> active#(f(mark(X))) p3: active#(c(X)) -> mark#(d(X)) p4: mark#(c(X)) -> active#(c(X)) p5: active#(h(X)) -> mark#(c(d(X))) p6: mark#(g(X)) -> active#(g(X)) p7: mark#(d(X)) -> active#(d(X)) p8: mark#(h(X)) -> active#(h(mark(X))) p9: mark#(h(X)) -> mark#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{4, x1} f_A(x1) = x1 + 13 mark#_A(x1) = max{5, x1} c_A(x1) = max{14, x1 + 6} g_A(x1) = 3 mark_A(x1) = x1 d_A(x1) = x1 + 3 h_A(x1) = max{16, x1 + 15} active_A(x1) = max{1, x1} precedence: active# = f = mark# = c = g = mark = d = h = active partial status: pi(active#) = [] pi(f) = [] pi(mark#) = [1] pi(c) = [1] pi(g) = [] pi(mark) = [1] pi(d) = [1] pi(h) = [] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(c(X)) -> mark#(d(X)) p3: mark#(c(X)) -> active#(c(X)) p4: active#(h(X)) -> mark#(c(d(X))) p5: mark#(g(X)) -> active#(g(X)) p6: mark#(d(X)) -> active#(d(X)) p7: mark#(h(X)) -> active#(h(mark(X))) p8: mark#(h(X)) -> mark#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(h(X)) -> mark#(c(d(X))) p3: mark#(h(X)) -> mark#(X) p4: mark#(h(X)) -> active#(h(mark(X))) p5: active#(c(X)) -> mark#(d(X)) p6: mark#(d(X)) -> active#(d(X)) p7: mark#(g(X)) -> active#(g(X)) p8: mark#(c(X)) -> active#(c(X)) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{20, x1 - 2} f_A(x1) = x1 + 21 active#_A(x1) = max{4, x1 - 2} mark_A(x1) = x1 h_A(x1) = x1 + 22 c_A(x1) = 22 d_A(x1) = 19 g_A(x1) = x1 + 8 active_A(x1) = max{4, x1} precedence: mark# = f = active# = mark = h = c = d = g = active partial status: pi(mark#) = [] pi(f) = [] pi(active#) = [] pi(mark) = [1] pi(h) = [] pi(c) = [] pi(d) = [] pi(g) = [1] pi(active) = [1] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(h(X)) -> mark#(c(d(X))) p3: mark#(h(X)) -> mark#(X) p4: mark#(h(X)) -> active#(h(mark(X))) p5: active#(c(X)) -> mark#(d(X)) p6: mark#(g(X)) -> active#(g(X)) p7: mark#(c(X)) -> active#(c(X)) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(c(X)) -> mark#(d(X)) p3: mark#(c(X)) -> active#(c(X)) p4: active#(h(X)) -> mark#(c(d(X))) p5: mark#(g(X)) -> active#(g(X)) p6: mark#(h(X)) -> active#(h(mark(X))) p7: mark#(h(X)) -> mark#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 49 f_A(x1) = x1 + 12 active#_A(x1) = x1 + 44 mark_A(x1) = x1 c_A(x1) = 22 d_A(x1) = 17 h_A(x1) = x1 + 30 g_A(x1) = 3 active_A(x1) = max{2, x1} precedence: h > mark# = f = active# = mark = c = d = g = active partial status: pi(mark#) = [] pi(f) = [] pi(active#) = [1] pi(mark) = [1] pi(c) = [] pi(d) = [] pi(h) = [] pi(g) = [] pi(active) = [1] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(c(X)) -> mark#(d(X)) p3: mark#(c(X)) -> active#(c(X)) p4: active#(h(X)) -> mark#(c(d(X))) p5: mark#(h(X)) -> active#(h(mark(X))) p6: mark#(h(X)) -> mark#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(h(X)) -> mark#(c(d(X))) p3: mark#(h(X)) -> mark#(X) p4: mark#(h(X)) -> active#(h(mark(X))) p5: active#(c(X)) -> mark#(d(X)) p6: mark#(c(X)) -> active#(c(X)) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{1, x1 - 4} f_A(x1) = max{28, x1 + 13} active#_A(x1) = max{2, x1 - 7} mark_A(x1) = x1 h_A(x1) = x1 + 28 c_A(x1) = x1 + 12 d_A(x1) = x1 + 8 active_A(x1) = max{1, x1} g_A(x1) = 2 precedence: mark# = f = active# = mark = h = c = d = active = g partial status: pi(mark#) = [] pi(f) = [] pi(active#) = [] pi(mark) = [1] pi(h) = [] pi(c) = [1] pi(d) = [1] pi(active) = [1] pi(g) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(h(X)) -> mark#(c(d(X))) p2: mark#(h(X)) -> mark#(X) p3: mark#(h(X)) -> active#(h(mark(X))) p4: active#(c(X)) -> mark#(d(X)) p5: mark#(c(X)) -> active#(c(X)) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(h(X)) -> mark#(c(d(X))) p2: mark#(c(X)) -> active#(c(X)) p3: active#(c(X)) -> mark#(d(X)) p4: mark#(h(X)) -> active#(h(mark(X))) p5: mark#(h(X)) -> mark#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{42, x1 + 1} h_A(x1) = x1 + 41 mark#_A(x1) = max{42, x1 + 20} c_A(x1) = 13 d_A(x1) = 11 mark_A(x1) = x1 active_A(x1) = max{1, x1} f_A(x1) = max{12, x1 + 7} g_A(x1) = 4 precedence: active# = h = mark# = c = d = mark = active = f = g partial status: pi(active#) = [1] pi(h) = [] pi(mark#) = [1] pi(c) = [] pi(d) = [] pi(mark) = [1] pi(active) = [1] pi(f) = [] pi(g) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(c(X)) -> active#(c(X)) p2: active#(c(X)) -> mark#(d(X)) p3: mark#(h(X)) -> active#(h(mark(X))) p4: mark#(h(X)) -> mark#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(c(X)) -> active#(c(X)) p2: active#(c(X)) -> mark#(d(X)) p3: mark#(h(X)) -> mark#(X) p4: mark#(h(X)) -> active#(h(mark(X))) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{13, x1 + 2} c_A(x1) = 13 active#_A(x1) = max{1, x1} d_A(x1) = 10 h_A(x1) = max{14, x1 + 2} mark_A(x1) = x1 active_A(x1) = max{9, x1} f_A(x1) = 14 g_A(x1) = max{10, x1 + 7} precedence: c = d > mark# > active# = h = mark = active = f = g partial status: pi(mark#) = [] pi(c) = [] pi(active#) = [1] pi(d) = [] pi(h) = [] pi(mark) = [1] pi(active) = [1] pi(f) = [] pi(g) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(c(X)) -> active#(c(X)) p2: active#(c(X)) -> mark#(d(X)) p3: mark#(h(X)) -> active#(h(mark(X))) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(c(X)) -> active#(c(X)) p2: active#(c(X)) -> mark#(d(X)) p3: mark#(h(X)) -> active#(h(mark(X))) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 14 c_A(x1) = x1 + 6 active#_A(x1) = max{20, x1 + 14} d_A(x1) = 5 h_A(x1) = max{12, x1 - 1} mark_A(x1) = max{6, x1} active_A(x1) = max{4, x1} f_A(x1) = max{15, x1 + 7} g_A(x1) = 3 precedence: c > mark# > active# = d = h = mark = active = f = g partial status: pi(mark#) = [] pi(c) = [1] pi(active#) = [1] pi(d) = [] pi(h) = [] pi(mark) = [1] pi(active) = [1] pi(f) = [] pi(g) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(c(X)) -> mark#(d(X)) p2: mark#(h(X)) -> active#(h(mark(X))) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(c(X)) -> mark#(d(X)) p2: mark#(h(X)) -> active#(h(mark(X))) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{15, x1} c_A(x1) = x1 + 8 mark#_A(x1) = max{7, x1} d_A(x1) = x1 + 6 h_A(x1) = x1 + 15 mark_A(x1) = x1 active_A(x1) = max{3, x1} f_A(x1) = x1 + 12 g_A(x1) = 3 precedence: active# = c = mark# = d = h = mark = active = f = g partial status: pi(active#) = [] pi(c) = [1] pi(mark#) = [1] pi(d) = [1] pi(h) = [] pi(mark) = [1] pi(active) = [1] pi(f) = [] pi(g) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(h(X)) -> active#(h(mark(X))) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(mark(X)) -> c#(X) p2: c#(active(X)) -> c#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: c#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: c# = mark = active partial status: pi(c#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(active(X)) -> c#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(active(X)) -> c#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: c#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: c# = active partial status: pi(c#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(active(X)) -> f#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: f# = mark = active partial status: pi(f#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(active(X)) -> f#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(active(X)) -> f#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: f# = active partial status: pi(f#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(mark(X)) -> g#(X) p2: g#(active(X)) -> g#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: g#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: g# = mark = active partial status: pi(g#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: g#(active(X)) -> g#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(active(X)) -> g#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: g#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: g# = active partial status: pi(g#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: d#(mark(X)) -> d#(X) p2: d#(active(X)) -> d#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: d#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: d# = mark = active partial status: pi(d#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: d#(active(X)) -> d#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: d#(active(X)) -> d#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: d#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: d# = active partial status: pi(d#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(mark(X)) -> h#(X) p2: h#(active(X)) -> h#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: h#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: h# = mark = active partial status: pi(h#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: h#(active(X)) -> h#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(active(X)) -> h#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(c(X)) -> active(c(X)) r6: mark(g(X)) -> active(g(X)) r7: mark(d(X)) -> active(d(X)) r8: mark(h(X)) -> active(h(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: c(mark(X)) -> c(X) r12: c(active(X)) -> c(X) r13: g(mark(X)) -> g(X) r14: g(active(X)) -> g(X) r15: d(mark(X)) -> d(X) r16: d(active(X)) -> d(X) r17: h(mark(X)) -> h(X) r18: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: h#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: h# = active partial status: pi(h#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.