YES We show the termination of the TRS R: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) a__sqr(|0|()) -> |0|() a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) a__dbl(|0|()) -> |0|() a__dbl(s(X)) -> s(s(dbl(X))) a__add(|0|(),X) -> mark(X) a__add(s(X),Y) -> s(add(X,Y)) a__first(|0|(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(X) mark(|0|()) -> |0|() mark(nil()) -> nil() a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1,X2) -> add(X1,X2) a__dbl(X) -> dbl(X) a__first(X1,X2) -> first(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__terms#(N) -> a__sqr#(mark(N)) p2: a__terms#(N) -> mark#(N) p3: a__add#(|0|(),X) -> mark#(X) p4: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p5: mark#(terms(X)) -> a__terms#(mark(X)) p6: mark#(terms(X)) -> mark#(X) p7: mark#(sqr(X)) -> a__sqr#(mark(X)) p8: mark#(sqr(X)) -> mark#(X) p9: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> mark#(X2) p12: mark#(dbl(X)) -> a__dbl#(mark(X)) p13: mark#(dbl(X)) -> mark#(X) p14: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p15: mark#(first(X1,X2)) -> mark#(X1) p16: mark#(first(X1,X2)) -> mark#(X2) p17: mark#(cons(X1,X2)) -> mark#(X1) p18: mark#(recip(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p8, p9, p10, p11, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__terms#(N) -> mark#(N) p2: mark#(recip(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(first(X1,X2)) -> mark#(X2) p5: mark#(first(X1,X2)) -> mark#(X1) p6: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p7: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p8: mark#(dbl(X)) -> mark#(X) p9: mark#(add(X1,X2)) -> mark#(X2) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p12: a__add#(|0|(),X) -> mark#(X) p13: mark#(sqr(X)) -> mark#(X) p14: mark#(terms(X)) -> mark#(X) p15: mark#(terms(X)) -> a__terms#(mark(X)) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: a__terms#_A(x1) = x1 + 42 mark#_A(x1) = max{42, x1 + 21} recip_A(x1) = max{189, x1 + 22} cons_A(x1,x2) = max{42, x1 + 32} first_A(x1,x2) = max{39, x1 + 30, x2 + 23} a__first#_A(x1,x2) = max{31, x1 - 10, x2} mark_A(x1) = max{31, x1 + 22} s_A(x1) = 52 dbl_A(x1) = max{78, x1 + 51} add_A(x1,x2) = max{94, x1 + 85, x2 + 75} a__add#_A(x1,x2) = max{x1 + 10, x2 + 43} |0|_A = 33 sqr_A(x1) = max{111, x1 + 102} terms_A(x1) = max{220, x1 + 188} a__terms_A(x1) = max{222, x1 + 188} a__sqr_A(x1) = max{127, x1 + 102} a__dbl_A(x1) = max{100, x1 + 51} a__add_A(x1,x2) = max{96, x1 + 85, x2 + 75} a__first_A(x1,x2) = max{41, x1 + 30, x2 + 23} nil_A = 42 precedence: a__terms# > mark# = recip = cons = first = a__first# = mark = s = dbl = add = a__add# = |0| = sqr = terms = a__terms = a__sqr = a__dbl = a__add = a__first = nil partial status: pi(a__terms#) = [] pi(mark#) = [1] pi(recip) = [1] pi(cons) = [1] pi(first) = [2] pi(a__first#) = [2] pi(mark) = [1] pi(s) = [] pi(dbl) = [1] pi(add) = [] pi(a__add#) = [2] pi(|0|) = [] pi(sqr) = [1] pi(terms) = [] pi(a__terms) = [] pi(a__sqr) = [1] pi(a__dbl) = [1] pi(a__add) = [] pi(a__first) = [2] pi(nil) = [] The next rules are strictly ordered: p15 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__terms#(N) -> mark#(N) p2: mark#(recip(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(first(X1,X2)) -> mark#(X2) p5: mark#(first(X1,X2)) -> mark#(X1) p6: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p7: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p8: mark#(dbl(X)) -> mark#(X) p9: mark#(add(X1,X2)) -> mark#(X2) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p12: a__add#(|0|(),X) -> mark#(X) p13: mark#(sqr(X)) -> mark#(X) p14: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p5: a__add#(|0|(),X) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> mark#(X2) p8: mark#(dbl(X)) -> mark#(X) p9: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p10: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p11: mark#(first(X1,X2)) -> mark#(X1) p12: mark#(first(X1,X2)) -> mark#(X2) p13: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{33, x1} recip_A(x1) = x1 + 8 terms_A(x1) = max{34, x1 + 33} sqr_A(x1) = x1 + 9 add_A(x1,x2) = max{34, x1, x2 + 8} a__add#_A(x1,x2) = max{x1 - 7, x2 + 1} mark_A(x1) = x1 + 7 |0|_A = 41 dbl_A(x1) = x1 + 1 first_A(x1,x2) = max{x1 + 85, x2 + 85} a__first#_A(x1,x2) = max{85, x1 + 78, x2 + 77} s_A(x1) = max{42, x1} cons_A(x1,x2) = max{x1 + 8, x2 - 43} a__terms_A(x1) = max{39, x1 + 33} a__sqr_A(x1) = max{10, x1 + 9} a__dbl_A(x1) = max{8, x1 + 1} a__add_A(x1,x2) = max{41, x1, x2 + 8} a__first_A(x1,x2) = max{92, x1 + 85, x2 + 85} nil_A = 84 precedence: mark > mark# = recip = terms = sqr = add = a__add# = |0| = dbl = first = s = cons = a__terms = a__sqr = a__dbl = a__add = a__first > a__first# = nil partial status: pi(mark#) = [1] pi(recip) = [1] pi(terms) = [1] pi(sqr) = [1] pi(add) = [1] pi(a__add#) = [2] pi(mark) = [1] pi(|0|) = [] pi(dbl) = [] pi(first) = [2] pi(a__first#) = [] pi(s) = [] pi(cons) = [1] pi(a__terms) = [1] pi(a__sqr) = [1] pi(a__dbl) = [] pi(a__add) = [1] pi(a__first) = [2] pi(nil) = [] The next rules are strictly ordered: p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p5: a__add#(|0|(),X) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> mark#(X2) p8: mark#(dbl(X)) -> mark#(X) p9: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p10: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p11: mark#(first(X1,X2)) -> mark#(X1) p12: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> mark#(X1) p4: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p5: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p6: mark#(dbl(X)) -> mark#(X) p7: mark#(add(X1,X2)) -> mark#(X2) p8: mark#(add(X1,X2)) -> mark#(X1) p9: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p10: a__add#(|0|(),X) -> mark#(X) p11: mark#(sqr(X)) -> mark#(X) p12: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{32, x1 - 4} recip_A(x1) = max{1, x1} cons_A(x1,x2) = max{33, x1 + 3} first_A(x1,x2) = max{x1 + 109, x2 + 97} a__first#_A(x1,x2) = max{92, x1 + 42, x2 + 30} mark_A(x1) = x1 + 62 s_A(x1) = 19 dbl_A(x1) = max{19, x1 + 4} add_A(x1,x2) = max{x1 + 70, x2 + 100} a__add#_A(x1,x2) = max{65, x1 + 1, x2 + 33} |0|_A = 32 sqr_A(x1) = max{58, x1} terms_A(x1) = x1 + 124 a__terms_A(x1) = x1 + 124 a__sqr_A(x1) = max{120, x1} a__dbl_A(x1) = max{19, x1 + 4} a__add_A(x1,x2) = max{x1 + 70, x2 + 100} a__first_A(x1,x2) = max{171, x1 + 109, x2 + 97} nil_A = 171 precedence: cons = mark = a__first > recip = first = nil > mark# = s = dbl = a__add# = sqr = a__terms = a__sqr = a__dbl > a__first# > |0| = terms > add = a__add partial status: pi(mark#) = [] pi(recip) = [] pi(cons) = [] pi(first) = [] pi(a__first#) = [2] pi(mark) = [] pi(s) = [] pi(dbl) = [] pi(add) = [1] pi(a__add#) = [] pi(|0|) = [] pi(sqr) = [] pi(terms) = [] pi(a__terms) = [] pi(a__sqr) = [] pi(a__dbl) = [] pi(a__add) = [1] pi(a__first) = [] pi(nil) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> mark#(X1) p4: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p5: mark#(dbl(X)) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X2) p7: mark#(add(X1,X2)) -> mark#(X1) p8: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p9: a__add#(|0|(),X) -> mark#(X) p10: mark#(sqr(X)) -> mark#(X) p11: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p5: a__add#(|0|(),X) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> mark#(X2) p8: mark#(dbl(X)) -> mark#(X) p9: mark#(first(X1,X2)) -> mark#(X1) p10: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{3, x1 - 5} recip_A(x1) = x1 + 4 terms_A(x1) = x1 + 106 sqr_A(x1) = x1 + 62 add_A(x1,x2) = max{x1, x2 + 31} a__add#_A(x1,x2) = max{0, x1 - 36, x2 - 5} mark_A(x1) = x1 + 31 |0|_A = 40 dbl_A(x1) = x1 + 31 first_A(x1,x2) = max{x1 + 32, x2 + 42} cons_A(x1,x2) = x1 + 9 a__terms_A(x1) = x1 + 106 a__sqr_A(x1) = x1 + 62 s_A(x1) = max{31, x1} a__dbl_A(x1) = max{32, x1 + 31} a__add_A(x1,x2) = max{x1, x2 + 31} a__first_A(x1,x2) = max{43, x1 + 32, x2 + 42} nil_A = 41 precedence: mark# = recip = terms = sqr = add = a__add# = mark = |0| = dbl = first = cons = a__terms = a__sqr = s = a__dbl = a__add = a__first = nil partial status: pi(mark#) = [] pi(recip) = [] pi(terms) = [] pi(sqr) = [] pi(add) = [2] pi(a__add#) = [] pi(mark) = [1] pi(|0|) = [] pi(dbl) = [1] pi(first) = [1, 2] pi(cons) = [] pi(a__terms) = [] pi(a__sqr) = [] pi(s) = [] pi(a__dbl) = [1] pi(a__add) = [2] pi(a__first) = [1, 2] pi(nil) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p5: a__add#(|0|(),X) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> mark#(X2) p8: mark#(dbl(X)) -> mark#(X) p9: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(first(X1,X2)) -> mark#(X1) p3: mark#(dbl(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p7: a__add#(|0|(),X) -> mark#(X) p8: mark#(sqr(X)) -> mark#(X) p9: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{0, x1 - 6} recip_A(x1) = max{18, x1} first_A(x1,x2) = max{x1, x2 + 27} dbl_A(x1) = max{51, x1} add_A(x1,x2) = max{x1 + 31, x2 + 33} a__add#_A(x1,x2) = max{x1 - 1, x2 + 1} mark_A(x1) = x1 + 25 |0|_A = 36 sqr_A(x1) = x1 + 34 terms_A(x1) = x1 + 74 a__terms_A(x1) = x1 + 74 cons_A(x1,x2) = x1 + 14 a__sqr_A(x1) = max{35, x1 + 34} s_A(x1) = 16 a__dbl_A(x1) = max{76, x1} a__add_A(x1,x2) = max{39, x1 + 31, x2 + 33} a__first_A(x1,x2) = max{28, x1, x2 + 27} nil_A = 23 precedence: mark# = a__add# > recip = add = mark = |0| = a__terms = s = a__dbl = a__add > dbl = terms > first = sqr = cons = a__sqr = a__first = nil partial status: pi(mark#) = [] pi(recip) = [] pi(first) = [] pi(dbl) = [] pi(add) = [] pi(a__add#) = [] pi(mark) = [1] pi(|0|) = [] pi(sqr) = [1] pi(terms) = [] pi(a__terms) = [] pi(cons) = [] pi(a__sqr) = [1] pi(s) = [] pi(a__dbl) = [] pi(a__add) = [] pi(a__first) = [] pi(nil) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(first(X1,X2)) -> mark#(X1) p3: mark#(dbl(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p7: a__add#(|0|(),X) -> mark#(X) p8: mark#(sqr(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(sqr(X)) -> mark#(X) p3: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p4: a__add#(|0|(),X) -> mark#(X) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> mark#(X2) p7: mark#(dbl(X)) -> mark#(X) p8: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{7, x1} recip_A(x1) = x1 + 19 sqr_A(x1) = x1 + 18 add_A(x1,x2) = max{19, x1 + 7, x2 + 9} a__add#_A(x1,x2) = max{19, x1 + 6, x2 + 6} mark_A(x1) = x1 |0|_A = 19 dbl_A(x1) = x1 + 23 first_A(x1,x2) = max{42, x1, x2 + 13} a__terms_A(x1) = x1 + 40 cons_A(x1,x2) = max{16, x1 + 2} a__sqr_A(x1) = x1 + 18 terms_A(x1) = x1 + 40 s_A(x1) = 0 a__dbl_A(x1) = x1 + 23 a__add_A(x1,x2) = max{19, x1 + 7, x2 + 9} a__first_A(x1,x2) = max{42, x1, x2 + 13} nil_A = 20 precedence: sqr = |0| = dbl = a__terms = cons = a__sqr = terms = s = a__dbl = nil > recip = mark = a__add > a__first > first > add > mark# = a__add# partial status: pi(mark#) = [1] pi(recip) = [] pi(sqr) = [] pi(add) = [1] pi(a__add#) = [] pi(mark) = [1] pi(|0|) = [] pi(dbl) = [] pi(first) = [1] pi(a__terms) = [] pi(cons) = [] pi(a__sqr) = [] pi(terms) = [] pi(s) = [] pi(a__dbl) = [] pi(a__add) = [1] pi(a__first) = [1] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(sqr(X)) -> mark#(X) p2: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p3: a__add#(|0|(),X) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> mark#(X2) p6: mark#(dbl(X)) -> mark#(X) p7: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(sqr(X)) -> mark#(X) p2: mark#(first(X1,X2)) -> mark#(X1) p3: mark#(dbl(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p7: a__add#(|0|(),X) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 sqr_A(x1) = x1 + 29 first_A(x1,x2) = max{x1, x2 + 11} dbl_A(x1) = max{4, x1} add_A(x1,x2) = max{x1 + 7, x2 + 12} a__add#_A(x1,x2) = max{x1 - 5, x2} mark_A(x1) = x1 |0|_A = 5 a__terms_A(x1) = max{49, x1 + 44} cons_A(x1,x2) = x1 + 13 recip_A(x1) = x1 + 2 a__sqr_A(x1) = x1 + 29 terms_A(x1) = max{49, x1 + 44} s_A(x1) = 4 a__dbl_A(x1) = max{4, x1} a__add_A(x1,x2) = max{x1 + 7, x2 + 12} a__first_A(x1,x2) = max{x1, x2 + 11} nil_A = 0 precedence: mark# = sqr = first = dbl = add = a__add# = mark = |0| = a__terms = cons = recip = a__sqr = terms = s = a__dbl = a__add = a__first = nil partial status: pi(mark#) = [] pi(sqr) = [1] pi(first) = [] pi(dbl) = [1] pi(add) = [] pi(a__add#) = [2] pi(mark) = [1] pi(|0|) = [] pi(a__terms) = [1] pi(cons) = [] pi(recip) = [1] pi(a__sqr) = [1] pi(terms) = [1] pi(s) = [] pi(a__dbl) = [1] pi(a__add) = [] pi(a__first) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X1) p2: mark#(dbl(X)) -> mark#(X) p3: mark#(add(X1,X2)) -> mark#(X2) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p6: a__add#(|0|(),X) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X1) p2: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p3: a__add#(|0|(),X) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> mark#(X2) p6: mark#(dbl(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{11, x1} first_A(x1,x2) = max{x1 + 12, x2 + 15} add_A(x1,x2) = max{x1 + 27, x2 + 25} a__add#_A(x1,x2) = max{x1 + 1, x2 + 11} mark_A(x1) = x1 + 14 |0|_A = 10 dbl_A(x1) = x1 + 15 a__terms_A(x1) = max{155, x1 + 91} cons_A(x1,x2) = 71 recip_A(x1) = x1 + 15 a__sqr_A(x1) = max{62, x1 + 61} terms_A(x1) = max{141, x1 + 91} s_A(x1) = 5 sqr_A(x1) = x1 + 61 a__dbl_A(x1) = max{16, x1 + 15} a__add_A(x1,x2) = max{x1 + 27, x2 + 25} a__first_A(x1,x2) = max{x1 + 12, x2 + 15} nil_A = 9 precedence: add = mark = |0| = dbl = a__terms = recip = a__sqr = terms = s = sqr = a__dbl = a__add > a__add# > mark# = first = cons = a__first = nil partial status: pi(mark#) = [1] pi(first) = [] pi(add) = [1, 2] pi(a__add#) = [1, 2] pi(mark) = [1] pi(|0|) = [] pi(dbl) = [1] pi(a__terms) = [1] pi(cons) = [] pi(recip) = [] pi(a__sqr) = [1] pi(terms) = [1] pi(s) = [] pi(sqr) = [1] pi(a__dbl) = [1] pi(a__add) = [1, 2] pi(a__first) = [] pi(nil) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X1) p2: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p3: mark#(add(X1,X2)) -> mark#(X1) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(dbl(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X1) p2: mark#(dbl(X)) -> mark#(X) p3: mark#(add(X1,X2)) -> mark#(X2) p4: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 2 first_A(x1,x2) = max{x1 + 1, x2 + 1} dbl_A(x1) = x1 add_A(x1,x2) = max{x1, x2} precedence: mark# = first = dbl = add partial status: pi(mark#) = [] pi(first) = [2] pi(dbl) = [1] pi(add) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(dbl(X)) -> mark#(X) p2: mark#(add(X1,X2)) -> mark#(X2) p3: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(dbl(X)) -> mark#(X) p2: mark#(add(X1,X2)) -> mark#(X1) p3: mark#(add(X1,X2)) -> mark#(X2) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 3 dbl_A(x1) = x1 + 1 add_A(x1,x2) = max{x1 + 1, x2} precedence: mark# = dbl = add partial status: pi(mark#) = [] pi(dbl) = [1] pi(add) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X1) p2: mark#(add(X1,X2)) -> mark#(X2) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X1) p2: mark#(add(X1,X2)) -> mark#(X2) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 3 add_A(x1,x2) = max{x1, x2 + 1} precedence: mark# = add partial status: pi(mark#) = [] pi(add) = [2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 2 add_A(x1,x2) = max{x1 + 1, x2 + 1} precedence: mark# = add partial status: pi(mark#) = [] pi(add) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.