YES We show the termination of the TRS R: active(fst(|0|(),Z)) -> mark(nil()) active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) active(from(X)) -> mark(cons(X,from(s(X)))) active(add(|0|(),X)) -> mark(X) active(add(s(X),Y)) -> mark(s(add(X,Y))) active(len(nil())) -> mark(|0|()) active(len(cons(X,Z))) -> mark(s(len(Z))) mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) mark(|0|()) -> active(|0|()) mark(nil()) -> active(nil()) mark(s(X)) -> active(s(X)) mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1),X2) -> fst(X1,X2) fst(X1,mark(X2)) -> fst(X1,X2) fst(active(X1),X2) -> fst(X1,X2) fst(X1,active(X2)) -> fst(X1,X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1),X2) -> add(X1,X2) add(X1,mark(X2)) -> add(X1,X2) add(active(X1),X2) -> add(X1,X2) add(X1,active(X2)) -> add(X1,X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(fst(|0|(),Z)) -> mark#(nil()) p2: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p3: active#(fst(s(X),cons(Y,Z))) -> cons#(Y,fst(X,Z)) p4: active#(fst(s(X),cons(Y,Z))) -> fst#(X,Z) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: active#(from(X)) -> cons#(X,from(s(X))) p7: active#(from(X)) -> from#(s(X)) p8: active#(from(X)) -> s#(X) p9: active#(add(|0|(),X)) -> mark#(X) p10: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p11: active#(add(s(X),Y)) -> s#(add(X,Y)) p12: active#(add(s(X),Y)) -> add#(X,Y) p13: active#(len(nil())) -> mark#(|0|()) p14: active#(len(cons(X,Z))) -> mark#(s(len(Z))) p15: active#(len(cons(X,Z))) -> s#(len(Z)) p16: active#(len(cons(X,Z))) -> len#(Z) p17: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) p18: mark#(fst(X1,X2)) -> fst#(mark(X1),mark(X2)) p19: mark#(fst(X1,X2)) -> mark#(X1) p20: mark#(fst(X1,X2)) -> mark#(X2) p21: mark#(|0|()) -> active#(|0|()) p22: mark#(nil()) -> active#(nil()) p23: mark#(s(X)) -> active#(s(X)) p24: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p25: mark#(cons(X1,X2)) -> cons#(mark(X1),X2) p26: mark#(cons(X1,X2)) -> mark#(X1) p27: mark#(from(X)) -> active#(from(mark(X))) p28: mark#(from(X)) -> from#(mark(X)) p29: mark#(from(X)) -> mark#(X) p30: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p31: mark#(add(X1,X2)) -> add#(mark(X1),mark(X2)) p32: mark#(add(X1,X2)) -> mark#(X1) p33: mark#(add(X1,X2)) -> mark#(X2) p34: mark#(len(X)) -> active#(len(mark(X))) p35: mark#(len(X)) -> len#(mark(X)) p36: mark#(len(X)) -> mark#(X) p37: fst#(mark(X1),X2) -> fst#(X1,X2) p38: fst#(X1,mark(X2)) -> fst#(X1,X2) p39: fst#(active(X1),X2) -> fst#(X1,X2) p40: fst#(X1,active(X2)) -> fst#(X1,X2) p41: s#(mark(X)) -> s#(X) p42: s#(active(X)) -> s#(X) p43: cons#(mark(X1),X2) -> cons#(X1,X2) p44: cons#(X1,mark(X2)) -> cons#(X1,X2) p45: cons#(active(X1),X2) -> cons#(X1,X2) p46: cons#(X1,active(X2)) -> cons#(X1,X2) p47: from#(mark(X)) -> from#(X) p48: from#(active(X)) -> from#(X) p49: add#(mark(X1),X2) -> add#(X1,X2) p50: add#(X1,mark(X2)) -> add#(X1,X2) p51: add#(active(X1),X2) -> add#(X1,X2) p52: add#(X1,active(X2)) -> add#(X1,X2) p53: len#(mark(X)) -> len#(X) p54: len#(active(X)) -> len#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p2, p5, p9, p10, p14, p17, p19, p20, p23, p24, p26, p27, p29, p30, p32, p33, p34, p36} {p43, p44, p45, p46} {p37, p38, p39, p40} {p47, p48} {p41, p42} {p49, p50, p51, p52} {p53, p54} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(len(X)) -> active#(len(mark(X))) p2: active#(len(cons(X,Z))) -> mark#(s(len(Z))) p3: mark#(len(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p7: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p8: mark#(from(X)) -> mark#(X) p9: mark#(from(X)) -> active#(from(mark(X))) p10: active#(add(|0|(),X)) -> mark#(X) p11: mark#(cons(X1,X2)) -> mark#(X1) p12: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p13: active#(from(X)) -> mark#(cons(X,from(s(X)))) p14: mark#(s(X)) -> active#(s(X)) p15: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p16: mark#(fst(X1,X2)) -> mark#(X2) p17: mark#(fst(X1,X2)) -> mark#(X1) p18: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{23, x1 - 56} len_A(x1) = max{57, x1 + 24} active#_A(x1) = max{4, x1 - 56} mark_A(x1) = max{16, x1} cons_A(x1,x2) = max{80, x1 + 62} s_A(x1) = 28 add_A(x1,x2) = max{80, x1 + 14, x2 + 29} from_A(x1) = max{137, x1 + 62} |0|_A = 66 fst_A(x1,x2) = max{x1, x2} active_A(x1) = max{1, x1} nil_A = 43 precedence: s = add > mark# = active# > len = cons > mark = |0| = active > from > fst > nil partial status: pi(mark#) = [] pi(len) = [] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(s) = [] pi(add) = [] pi(from) = [] pi(|0|) = [] pi(fst) = [] pi(active) = [] pi(nil) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(len(X)) -> active#(len(mark(X))) p2: mark#(len(X)) -> mark#(X) p3: mark#(add(X1,X2)) -> mark#(X2) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p6: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p7: mark#(from(X)) -> mark#(X) p8: mark#(from(X)) -> active#(from(mark(X))) p9: active#(add(|0|(),X)) -> mark#(X) p10: mark#(cons(X1,X2)) -> mark#(X1) p11: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p12: active#(from(X)) -> mark#(cons(X,from(s(X)))) p13: mark#(s(X)) -> active#(s(X)) p14: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p15: mark#(fst(X1,X2)) -> mark#(X2) p16: mark#(fst(X1,X2)) -> mark#(X1) p17: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(len(X)) -> active#(len(mark(X))) p2: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p3: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(fst(X1,X2)) -> mark#(X1) p6: mark#(fst(X1,X2)) -> mark#(X2) p7: mark#(s(X)) -> active#(s(X)) p8: active#(add(|0|(),X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p11: mark#(cons(X1,X2)) -> mark#(X1) p12: mark#(from(X)) -> active#(from(mark(X))) p13: mark#(from(X)) -> mark#(X) p14: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p15: mark#(add(X1,X2)) -> mark#(X1) p16: mark#(add(X1,X2)) -> mark#(X2) p17: mark#(len(X)) -> mark#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 114 len_A(x1) = max{107, x1} active#_A(x1) = max{112, x1 + 108} mark_A(x1) = x1 fst_A(x1,x2) = max{x1 + 47, x2 + 110} s_A(x1) = 70 cons_A(x1,x2) = x1 + 71 from_A(x1) = x1 + 185 add_A(x1,x2) = max{x1 + 114, x2 + 114} |0|_A = 50 active_A(x1) = max{48, x1} nil_A = 49 precedence: len > mark# = active# = mark = fst = s = cons = from = add = |0| = active = nil partial status: pi(mark#) = [] pi(len) = [] pi(active#) = [] pi(mark) = [1] pi(fst) = [] pi(s) = [] pi(cons) = [] pi(from) = [] pi(add) = [] pi(|0|) = [] pi(active) = [1] pi(nil) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(len(X)) -> active#(len(mark(X))) p2: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p3: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(fst(X1,X2)) -> mark#(X1) p6: mark#(fst(X1,X2)) -> mark#(X2) p7: mark#(s(X)) -> active#(s(X)) p8: active#(add(|0|(),X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: mark#(cons(X1,X2)) -> mark#(X1) p11: mark#(from(X)) -> active#(from(mark(X))) p12: mark#(from(X)) -> mark#(X) p13: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p14: mark#(add(X1,X2)) -> mark#(X1) p15: mark#(add(X1,X2)) -> mark#(X2) p16: mark#(len(X)) -> mark#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(len(X)) -> active#(len(mark(X))) p2: active#(add(|0|(),X)) -> mark#(X) p3: mark#(len(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p7: active#(from(X)) -> mark#(cons(X,from(s(X)))) p8: mark#(from(X)) -> mark#(X) p9: mark#(from(X)) -> active#(from(mark(X))) p10: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p11: mark#(cons(X1,X2)) -> mark#(X1) p12: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p13: mark#(s(X)) -> active#(s(X)) p14: mark#(fst(X1,X2)) -> mark#(X2) p15: mark#(fst(X1,X2)) -> mark#(X1) p16: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{43, x1 - 4} len_A(x1) = max{190, x1 + 148} active#_A(x1) = max{23, x1 - 128} mark_A(x1) = max{59, x1 + 17} add_A(x1,x2) = max{228, x1 + 113, x2 + 177} |0|_A = 191 from_A(x1) = max{182, x1 + 124} cons_A(x1,x2) = max{44, x1} s_A(x1) = 28 fst_A(x1,x2) = max{169, x1 + 111, x2 + 127} active_A(x1) = max{51, x1} nil_A = 109 precedence: active# > mark > mark# = len > add = |0| = from = cons = s = fst = active = nil partial status: pi(mark#) = [] pi(len) = [1] pi(active#) = [] pi(mark) = [] pi(add) = [] pi(|0|) = [] pi(from) = [1] pi(cons) = [] pi(s) = [] pi(fst) = [] pi(active) = [1] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(add(|0|(),X)) -> mark#(X) p2: mark#(len(X)) -> mark#(X) p3: mark#(add(X1,X2)) -> mark#(X2) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p6: active#(from(X)) -> mark#(cons(X,from(s(X)))) p7: mark#(from(X)) -> mark#(X) p8: mark#(from(X)) -> active#(from(mark(X))) p9: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p10: mark#(cons(X1,X2)) -> mark#(X1) p11: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p12: mark#(s(X)) -> active#(s(X)) p13: mark#(fst(X1,X2)) -> mark#(X2) p14: mark#(fst(X1,X2)) -> mark#(X1) p15: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(add(|0|(),X)) -> mark#(X) p2: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) p3: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p4: mark#(fst(X1,X2)) -> mark#(X1) p5: mark#(fst(X1,X2)) -> mark#(X2) p6: mark#(s(X)) -> active#(s(X)) p7: active#(from(X)) -> mark#(cons(X,from(s(X)))) p8: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(from(X)) -> active#(from(mark(X))) p11: mark#(from(X)) -> mark#(X) p12: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p13: mark#(add(X1,X2)) -> mark#(X1) p14: mark#(add(X1,X2)) -> mark#(X2) p15: mark#(len(X)) -> mark#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 8 add_A(x1,x2) = max{x1 + 3, x2 + 7} |0|_A = 24 mark#_A(x1) = max{12, x1 + 8} fst_A(x1,x2) = max{x1 + 30, x2 + 31} mark_A(x1) = x1 s_A(x1) = x1 cons_A(x1,x2) = max{13, x1 + 7, x2} from_A(x1) = x1 + 14 len_A(x1) = x1 + 15 active_A(x1) = x1 nil_A = 23 precedence: active# = add = |0| = mark# = fst = mark = s = cons = from = len = active = nil partial status: pi(active#) = [1] pi(add) = [] pi(|0|) = [] pi(mark#) = [1] pi(fst) = [] pi(mark) = [1] pi(s) = [] pi(cons) = [] pi(from) = [] pi(len) = [] pi(active) = [1] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) p2: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p3: mark#(fst(X1,X2)) -> mark#(X1) p4: mark#(fst(X1,X2)) -> mark#(X2) p5: mark#(s(X)) -> active#(s(X)) p6: active#(from(X)) -> mark#(cons(X,from(s(X)))) p7: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(from(X)) -> active#(from(mark(X))) p10: mark#(from(X)) -> mark#(X) p11: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p12: mark#(add(X1,X2)) -> mark#(X1) p13: mark#(add(X1,X2)) -> mark#(X2) p14: mark#(len(X)) -> mark#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) p2: active#(from(X)) -> mark#(cons(X,from(s(X)))) p3: mark#(len(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p7: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p8: mark#(from(X)) -> mark#(X) p9: mark#(from(X)) -> active#(from(mark(X))) p10: mark#(cons(X1,X2)) -> mark#(X1) p11: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p12: mark#(s(X)) -> active#(s(X)) p13: mark#(fst(X1,X2)) -> mark#(X2) p14: mark#(fst(X1,X2)) -> mark#(X1) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 25 fst_A(x1,x2) = max{x1 + 13, x2 + 12} active#_A(x1) = max{36, x1 + 25} mark_A(x1) = x1 from_A(x1) = max{35, x1 + 18} cons_A(x1,x2) = max{x1 + 15, x2} s_A(x1) = max{17, x1} len_A(x1) = x1 + 26 add_A(x1,x2) = max{x1 + 39, x2 + 38} active_A(x1) = max{13, x1} |0|_A = 39 nil_A = 14 precedence: mark# = fst = active# = mark = from = cons = s = len = add = active = |0| = nil partial status: pi(mark#) = [1] pi(fst) = [] pi(active#) = [1] pi(mark) = [1] pi(from) = [] pi(cons) = [] pi(s) = [] pi(len) = [] pi(add) = [] pi(active) = [1] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) p2: active#(from(X)) -> mark#(cons(X,from(s(X)))) p3: mark#(add(X1,X2)) -> mark#(X2) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p6: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p7: mark#(from(X)) -> mark#(X) p8: mark#(from(X)) -> active#(from(mark(X))) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p11: mark#(s(X)) -> active#(s(X)) p12: mark#(fst(X1,X2)) -> mark#(X2) p13: mark#(fst(X1,X2)) -> mark#(X1) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> active#(fst(mark(X1),mark(X2))) p2: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p3: mark#(fst(X1,X2)) -> mark#(X1) p4: mark#(fst(X1,X2)) -> mark#(X2) p5: mark#(s(X)) -> active#(s(X)) p6: active#(from(X)) -> mark#(cons(X,from(s(X)))) p7: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(from(X)) -> active#(from(mark(X))) p10: mark#(from(X)) -> mark#(X) p11: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p12: mark#(add(X1,X2)) -> mark#(X1) p13: mark#(add(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{105, x1 + 48} fst_A(x1,x2) = max{x1 + 208, x2 + 167} active#_A(x1) = max{104, x1 + 40} mark_A(x1) = x1 s_A(x1) = 66 cons_A(x1,x2) = max{54, x1 + 13} from_A(x1) = x1 + 65 add_A(x1,x2) = max{x1 + 88, x2 + 48} active_A(x1) = max{54, x1} |0|_A = 105 nil_A = 104 len_A(x1) = x1 + 54 precedence: mark# = fst = active# = mark = s = cons = from = add = active = |0| = nil = len partial status: pi(mark#) = [1] pi(fst) = [] pi(active#) = [1] pi(mark) = [1] pi(s) = [] pi(cons) = [] pi(from) = [] pi(add) = [] pi(active) = [1] pi(|0|) = [] pi(nil) = [] pi(len) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p2: mark#(fst(X1,X2)) -> mark#(X1) p3: mark#(fst(X1,X2)) -> mark#(X2) p4: mark#(s(X)) -> active#(s(X)) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(from(X)) -> active#(from(mark(X))) p9: mark#(from(X)) -> mark#(X) p10: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p11: mark#(add(X1,X2)) -> mark#(X1) p12: mark#(add(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p2: mark#(add(X1,X2)) -> mark#(X2) p3: mark#(add(X1,X2)) -> mark#(X1) p4: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(from(X)) -> mark#(X) p7: mark#(from(X)) -> active#(from(mark(X))) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: mark#(s(X)) -> active#(s(X)) p11: mark#(fst(X1,X2)) -> mark#(X2) p12: mark#(fst(X1,X2)) -> mark#(X1) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{49, x1 + 3} fst_A(x1,x2) = max{x1 + 101, x2 + 235} s_A(x1) = 50 cons_A(x1,x2) = x1 + 60 mark#_A(x1) = x1 + 60 add_A(x1,x2) = max{x1 + 74, x2 + 100} mark_A(x1) = x1 + 50 from_A(x1) = x1 + 120 active_A(x1) = max{29, x1} |0|_A = 50 nil_A = 152 len_A(x1) = 100 precedence: fst = s = cons = mark = from = active = |0| = nil > mark# > active# > add = len partial status: pi(active#) = [1] pi(fst) = [] pi(s) = [] pi(cons) = [] pi(mark#) = [1] pi(add) = [2] pi(mark) = [] pi(from) = [] pi(active) = [] pi(|0|) = [] pi(nil) = [] pi(len) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p2: mark#(add(X1,X2)) -> mark#(X2) p3: mark#(add(X1,X2)) -> mark#(X1) p4: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(from(X)) -> mark#(X) p7: mark#(from(X)) -> active#(from(mark(X))) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: mark#(fst(X1,X2)) -> mark#(X2) p11: mark#(fst(X1,X2)) -> mark#(X1) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(fst(s(X),cons(Y,Z))) -> mark#(cons(Y,fst(X,Z))) p2: mark#(fst(X1,X2)) -> mark#(X1) p3: mark#(fst(X1,X2)) -> mark#(X2) p4: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(from(X)) -> active#(from(mark(X))) p8: mark#(from(X)) -> mark#(X) p9: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{49, x1 - 14} fst_A(x1,x2) = max{x1 + 108, x2 + 93} s_A(x1) = 0 cons_A(x1,x2) = max{31, x1} mark#_A(x1) = max{47, x1 + 18} mark_A(x1) = x1 + 27 from_A(x1) = max{58, x1 + 32} add_A(x1,x2) = max{x1 + 48, x2 + 48} active_A(x1) = max{24, x1} |0|_A = 0 nil_A = 67 len_A(x1) = 27 precedence: active# = cons = mark# = mark = add = active = nil > |0| > fst = s = from > len partial status: pi(active#) = [] pi(fst) = [1, 2] pi(s) = [] pi(cons) = [] pi(mark#) = [] pi(mark) = [] pi(from) = [] pi(add) = [] pi(active) = [] pi(|0|) = [] pi(nil) = [] pi(len) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(fst(X1,X2)) -> mark#(X2) p3: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(cons(X1,X2)) -> mark#(X1) p6: mark#(from(X)) -> active#(from(mark(X))) p7: mark#(from(X)) -> mark#(X) p8: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p9: mark#(add(X1,X2)) -> mark#(X1) p10: mark#(add(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(add(X1,X2)) -> mark#(X2) p3: mark#(add(X1,X2)) -> mark#(X1) p4: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(from(X)) -> mark#(X) p7: mark#(from(X)) -> active#(from(mark(X))) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 21 fst_A(x1,x2) = 21 add_A(x1,x2) = 5 active#_A(x1) = max{19, x1 + 15} mark_A(x1) = 21 from_A(x1) = 6 cons_A(x1,x2) = 3 s_A(x1) = 4 active_A(x1) = max{21, x1} |0|_A = 20 nil_A = 19 len_A(x1) = 21 precedence: fst = mark = active > mark# = add = active# = s = |0| = nil = len > from = cons partial status: pi(mark#) = [] pi(fst) = [] pi(add) = [] pi(active#) = [] pi(mark) = [] pi(from) = [] pi(cons) = [] pi(s) = [] pi(active) = [] pi(|0|) = [] pi(nil) = [] pi(len) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(add(X1,X2)) -> mark#(X2) p3: mark#(add(X1,X2)) -> mark#(X1) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(from(X)) -> mark#(X) p6: mark#(from(X)) -> active#(from(mark(X))) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p9: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(fst(X1,X2)) -> mark#(X2) p3: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(cons(X1,X2)) -> mark#(X1) p6: mark#(from(X)) -> active#(from(mark(X))) p7: mark#(from(X)) -> mark#(X) p8: mark#(add(X1,X2)) -> mark#(X1) p9: mark#(add(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{18, x1 + 14} fst_A(x1,x2) = max{x1 + 246, x2 + 253} cons_A(x1,x2) = x1 + 18 active#_A(x1) = max{16, x1 - 43} mark_A(x1) = x1 + 14 from_A(x1) = x1 + 117 s_A(x1) = 15 add_A(x1,x2) = max{182, x1 + 174, x2 + 181} active_A(x1) = max{29, x1} |0|_A = 16 nil_A = 31 len_A(x1) = max{28, x1 + 19} precedence: nil > fst = cons = active# = mark = from = s = add = active = |0| > len > mark# partial status: pi(mark#) = [1] pi(fst) = [] pi(cons) = [] pi(active#) = [] pi(mark) = [1] pi(from) = [] pi(s) = [] pi(add) = [] pi(active) = [] pi(|0|) = [] pi(nil) = [] pi(len) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(fst(X1,X2)) -> mark#(X2) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(cons(X1,X2)) -> mark#(X1) p5: mark#(from(X)) -> active#(from(mark(X))) p6: mark#(from(X)) -> mark#(X) p7: mark#(add(X1,X2)) -> mark#(X1) p8: mark#(add(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X1) p2: mark#(add(X1,X2)) -> mark#(X2) p3: mark#(add(X1,X2)) -> mark#(X1) p4: mark#(from(X)) -> mark#(X) p5: mark#(from(X)) -> active#(from(mark(X))) p6: active#(from(X)) -> mark#(cons(X,from(s(X)))) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{32, x1 - 18} fst_A(x1,x2) = max{x1 + 70, x2 + 21} add_A(x1,x2) = max{x1 + 24, x2 + 21} from_A(x1) = x1 + 72 active#_A(x1) = max{1, x1 - 40} mark_A(x1) = x1 + 21 cons_A(x1,x2) = x1 + 50 s_A(x1) = 24 active_A(x1) = max{18, x1} |0|_A = 22 nil_A = 48 len_A(x1) = max{17, x1 - 5} precedence: fst > mark# = add = from = active# = mark = cons = s = active = |0| = nil = len partial status: pi(mark#) = [] pi(fst) = [] pi(add) = [] pi(from) = [] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(s) = [] pi(active) = [] pi(|0|) = [] pi(nil) = [] pi(len) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X2) p2: mark#(add(X1,X2)) -> mark#(X1) p3: mark#(from(X)) -> mark#(X) p4: mark#(from(X)) -> active#(from(mark(X))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X2) p2: mark#(fst(X1,X2)) -> mark#(X2) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(from(X)) -> active#(from(mark(X))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(from(X)) -> mark#(X) p7: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{2, x1} add_A(x1,x2) = max{x1 + 4, x2 + 4} fst_A(x1,x2) = x2 + 13 cons_A(x1,x2) = x1 + 3 from_A(x1) = x1 + 17 active#_A(x1) = max{17, x1 - 1} mark_A(x1) = x1 s_A(x1) = 0 active_A(x1) = x1 |0|_A = 10 nil_A = 1 len_A(x1) = x1 + 10 precedence: mark# = add = fst = cons = from = active# = mark = s = active = |0| = nil = len partial status: pi(mark#) = [1] pi(add) = [] pi(fst) = [] pi(cons) = [] pi(from) = [] pi(active#) = [] pi(mark) = [1] pi(s) = [] pi(active) = [1] pi(|0|) = [] pi(nil) = [] pi(len) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X2) p2: mark#(fst(X1,X2)) -> mark#(X2) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(from(X)) -> active#(from(mark(X))) p5: mark#(from(X)) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X2) p2: mark#(add(X1,X2)) -> mark#(X1) p3: mark#(from(X)) -> mark#(X) p4: mark#(cons(X1,X2)) -> mark#(X1) p5: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{3, x1 + 2} add_A(x1,x2) = max{x1, x2} from_A(x1) = max{1, x1} cons_A(x1,x2) = max{x1 + 3, x2 + 3} fst_A(x1,x2) = x2 precedence: mark# = add = from = cons = fst partial status: pi(mark#) = [1] pi(add) = [1, 2] pi(from) = [1] pi(cons) = [1, 2] pi(fst) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X1) p2: mark#(from(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(fst(X1,X2)) -> mark#(X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X1) p2: mark#(fst(X1,X2)) -> mark#(X2) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(from(X)) -> mark#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{5, x1 + 2} add_A(x1,x2) = max{x1, x2} fst_A(x1,x2) = x2 + 3 cons_A(x1,x2) = max{x1, x2} from_A(x1) = max{3, x1} precedence: mark# = add = fst = cons = from partial status: pi(mark#) = [1] pi(add) = [1, 2] pi(fst) = [2] pi(cons) = [1, 2] pi(from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X2) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(from(X)) -> mark#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(fst(X1,X2)) -> mark#(X2) p2: mark#(from(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{3, x1 + 2} fst_A(x1,x2) = x2 from_A(x1) = x1 + 3 cons_A(x1,x2) = max{1, x1, x2} precedence: mark# = fst = from = cons partial status: pi(mark#) = [1] pi(fst) = [2] pi(from) = [1] pi(cons) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(from(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(from(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 1 from_A(x1) = x1 cons_A(x1,x2) = max{x1, x2} precedence: mark# = from = cons partial status: pi(mark#) = [1] pi(from) = [1] pi(cons) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 2 cons_A(x1,x2) = max{x1 + 1, x2 + 1} precedence: mark# = cons partial status: pi(mark#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) p3: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,mark(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: cons# = active partial status: pi(cons#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: fst#(mark(X1),X2) -> fst#(X1,X2) p2: fst#(X1,active(X2)) -> fst#(X1,X2) p3: fst#(active(X1),X2) -> fst#(X1,X2) p4: fst#(X1,mark(X2)) -> fst#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: fst#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: fst# = mark = active partial status: pi(fst#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: fst#(mark(X1),X2) -> fst#(X1,X2) p2: fst#(active(X1),X2) -> fst#(X1,X2) p3: fst#(X1,mark(X2)) -> fst#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: fst#(mark(X1),X2) -> fst#(X1,X2) p2: fst#(X1,mark(X2)) -> fst#(X1,X2) p3: fst#(active(X1),X2) -> fst#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: fst#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: fst# = mark = active partial status: pi(fst#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: fst#(X1,mark(X2)) -> fst#(X1,X2) p2: fst#(active(X1),X2) -> fst#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: fst#(X1,mark(X2)) -> fst#(X1,X2) p2: fst#(active(X1),X2) -> fst#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: fst#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: fst# = mark = active partial status: pi(fst#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: fst#(active(X1),X2) -> fst#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: fst#(active(X1),X2) -> fst#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: fst#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: fst# = active partial status: pi(fst#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(mark(X)) -> from#(X) p2: from#(active(X)) -> from#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: from#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: from# = mark = active partial status: pi(from#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: from#(active(X)) -> from#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(active(X)) -> from#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: from#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: from# = active partial status: pi(from#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = max{3, x1 + 2} mark_A(x1) = x1 active_A(x1) = x1 + 1 precedence: s# = mark = active partial status: pi(s#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: s# = active partial status: pi(s#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(X1,active(X2)) -> add#(X1,X2) p3: add#(active(X1),X2) -> add#(X1,X2) p4: add#(X1,mark(X2)) -> add#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: add#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: add# = mark = active partial status: pi(add#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(active(X1),X2) -> add#(X1,X2) p3: add#(X1,mark(X2)) -> add#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(X1,mark(X2)) -> add#(X1,X2) p3: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: add#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: add# = mark = active partial status: pi(add#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: add#(X1,mark(X2)) -> add#(X1,X2) p2: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(X1,mark(X2)) -> add#(X1,X2) p2: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: add#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: add# = mark = active partial status: pi(add#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: add#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: add# = active partial status: pi(add#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: len#(mark(X)) -> len#(X) p2: len#(active(X)) -> len#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: len#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: len# = mark = active partial status: pi(len#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: len#(active(X)) -> len#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: len#(active(X)) -> len#(X) and R consists of: r1: active(fst(|0|(),Z)) -> mark(nil()) r2: active(fst(s(X),cons(Y,Z))) -> mark(cons(Y,fst(X,Z))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: active(add(|0|(),X)) -> mark(X) r5: active(add(s(X),Y)) -> mark(s(add(X,Y))) r6: active(len(nil())) -> mark(|0|()) r7: active(len(cons(X,Z))) -> mark(s(len(Z))) r8: mark(fst(X1,X2)) -> active(fst(mark(X1),mark(X2))) r9: mark(|0|()) -> active(|0|()) r10: mark(nil()) -> active(nil()) r11: mark(s(X)) -> active(s(X)) r12: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r13: mark(from(X)) -> active(from(mark(X))) r14: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r15: mark(len(X)) -> active(len(mark(X))) r16: fst(mark(X1),X2) -> fst(X1,X2) r17: fst(X1,mark(X2)) -> fst(X1,X2) r18: fst(active(X1),X2) -> fst(X1,X2) r19: fst(X1,active(X2)) -> fst(X1,X2) r20: s(mark(X)) -> s(X) r21: s(active(X)) -> s(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: from(mark(X)) -> from(X) r27: from(active(X)) -> from(X) r28: add(mark(X1),X2) -> add(X1,X2) r29: add(X1,mark(X2)) -> add(X1,X2) r30: add(active(X1),X2) -> add(X1,X2) r31: add(X1,active(X2)) -> add(X1,X2) r32: len(mark(X)) -> len(X) r33: len(active(X)) -> len(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: len#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: len# = active partial status: pi(len#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.