YES We show the termination of the TRS R: dbl(|0|()) -> |0|() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbls(nil()) -> nil() dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) sel(|0|(),cons(X,Y)) -> activate(X) sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) indx(nil(),X) -> nil() indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) s(X) -> n__s(X) dbl(X) -> n__dbl(X) dbls(X) -> n__dbls(X) sel(X1,X2) -> n__sel(X1,X2) indx(X1,X2) -> n__indx(X1,X2) from(X) -> n__from(X) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__dbls(X)) -> dbls(X) activate(n__sel(X1,X2)) -> sel(X1,X2) activate(n__indx(X1,X2)) -> indx(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> s#(n__s(n__dbl(activate(X)))) p2: dbl#(s(X)) -> activate#(X) p3: dbls#(cons(X,Y)) -> activate#(X) p4: dbls#(cons(X,Y)) -> activate#(Y) p5: sel#(|0|(),cons(X,Y)) -> activate#(X) p6: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p7: sel#(s(X),cons(Y,Z)) -> activate#(X) p8: sel#(s(X),cons(Y,Z)) -> activate#(Z) p9: indx#(cons(X,Y),Z) -> activate#(X) p10: indx#(cons(X,Y),Z) -> activate#(Z) p11: indx#(cons(X,Y),Z) -> activate#(Y) p12: from#(X) -> activate#(X) p13: activate#(n__s(X)) -> s#(X) p14: activate#(n__dbl(X)) -> dbl#(X) p15: activate#(n__dbls(X)) -> dbls#(X) p16: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p17: activate#(n__indx(X1,X2)) -> indx#(X1,X2) p18: activate#(n__from(X)) -> from#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__from(X)) -> from#(X) p3: from#(X) -> activate#(X) p4: activate#(n__indx(X1,X2)) -> indx#(X1,X2) p5: indx#(cons(X,Y),Z) -> activate#(Y) p6: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p7: sel#(s(X),cons(Y,Z)) -> activate#(Z) p8: activate#(n__dbls(X)) -> dbls#(X) p9: dbls#(cons(X,Y)) -> activate#(Y) p10: activate#(n__dbl(X)) -> dbl#(X) p11: dbls#(cons(X,Y)) -> activate#(X) p12: sel#(s(X),cons(Y,Z)) -> activate#(X) p13: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p14: sel#(|0|(),cons(X,Y)) -> activate#(X) p15: indx#(cons(X,Y),Z) -> activate#(Z) p16: indx#(cons(X,Y),Z) -> activate#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: dbl#_A(x1) = x1 + 1 s_A(x1) = max{6, x1} activate#_A(x1) = x1 n__from_A(x1) = x1 from#_A(x1) = x1 n__indx_A(x1,x2) = max{33, x1 + 27, x2 + 5} indx#_A(x1,x2) = max{x1 + 6, x2 + 1} cons_A(x1,x2) = max{6, x1 - 5, x2} n__sel_A(x1,x2) = max{x1 + 15, x2 + 10} sel#_A(x1,x2) = max{x1 + 14, x2 + 7} n__dbls_A(x1) = x1 + 20 dbls#_A(x1) = x1 + 20 n__dbl_A(x1) = x1 + 13 activate_A(x1) = max{6, x1} |0|_A = 0 dbl_A(x1) = x1 + 13 n__s_A(x1) = max{6, x1} dbls_A(x1) = x1 + 20 nil_A = 0 sel_A(x1,x2) = max{x1 + 15, x2 + 10} indx_A(x1,x2) = max{33, x1 + 27, x2 + 5} from_A(x1) = max{6, x1} precedence: nil > n__dbl = dbl > s = n__s > activate = |0| = dbls = sel = indx > n__dbls > from > cons > n__indx > dbl# = activate# = n__from = from# = indx# = n__sel = sel# = dbls# partial status: pi(dbl#) = [] pi(s) = [1] pi(activate#) = [] pi(n__from) = [] pi(from#) = [] pi(n__indx) = [1] pi(indx#) = [] pi(cons) = [2] pi(n__sel) = [1] pi(sel#) = [] pi(n__dbls) = [] pi(dbls#) = [] pi(n__dbl) = [1] pi(activate) = [1] pi(|0|) = [] pi(dbl) = [1] pi(n__s) = [1] pi(dbls) = [1] pi(nil) = [] pi(sel) = [] pi(indx) = [] pi(from) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__from(X)) -> from#(X) p3: from#(X) -> activate#(X) p4: activate#(n__indx(X1,X2)) -> indx#(X1,X2) p5: indx#(cons(X,Y),Z) -> activate#(Y) p6: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p7: activate#(n__dbls(X)) -> dbls#(X) p8: dbls#(cons(X,Y)) -> activate#(Y) p9: activate#(n__dbl(X)) -> dbl#(X) p10: dbls#(cons(X,Y)) -> activate#(X) p11: sel#(s(X),cons(Y,Z)) -> activate#(X) p12: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p13: sel#(|0|(),cons(X,Y)) -> activate#(X) p14: indx#(cons(X,Y),Z) -> activate#(Z) p15: indx#(cons(X,Y),Z) -> activate#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__dbl(X)) -> dbl#(X) p3: activate#(n__dbls(X)) -> dbls#(X) p4: dbls#(cons(X,Y)) -> activate#(X) p5: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p6: sel#(|0|(),cons(X,Y)) -> activate#(X) p7: activate#(n__indx(X1,X2)) -> indx#(X1,X2) p8: indx#(cons(X,Y),Z) -> activate#(X) p9: activate#(n__from(X)) -> from#(X) p10: from#(X) -> activate#(X) p11: indx#(cons(X,Y),Z) -> activate#(Z) p12: indx#(cons(X,Y),Z) -> activate#(Y) p13: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p14: sel#(s(X),cons(Y,Z)) -> activate#(X) p15: dbls#(cons(X,Y)) -> activate#(Y) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: dbl#_A(x1) = x1 s_A(x1) = max{6, x1} activate#_A(x1) = max{6, x1} n__dbl_A(x1) = x1 n__dbls_A(x1) = max{10, x1 + 7} dbls#_A(x1) = x1 + 6 cons_A(x1,x2) = max{x1, x2} n__sel_A(x1,x2) = max{x1 + 9, x2 + 12} sel#_A(x1,x2) = max{x1 + 7, x2 + 11} |0|_A = 1 n__indx_A(x1,x2) = max{18, x1 + 12, x2 + 15} indx#_A(x1,x2) = max{x1 + 6, x2 + 6} n__from_A(x1) = max{14, x1 + 8} from#_A(x1) = x1 + 7 activate_A(x1) = max{2, x1} dbl_A(x1) = x1 n__s_A(x1) = max{6, x1} dbls_A(x1) = max{10, x1 + 7} nil_A = 14 sel_A(x1,x2) = max{x1 + 9, x2 + 12} indx_A(x1,x2) = max{18, x1 + 12, x2 + 15} from_A(x1) = max{14, x1 + 8} precedence: |0| = n__indx = indx > n__from = from > n__dbls = dbls > n__dbl = cons = dbl > s = n__s > nil > activate = sel > dbls# = indx# > dbl# = activate# > sel# > from# > n__sel partial status: pi(dbl#) = [1] pi(s) = [1] pi(activate#) = [1] pi(n__dbl) = [1] pi(n__dbls) = [1] pi(dbls#) = [] pi(cons) = [1] pi(n__sel) = [1] pi(sel#) = [1] pi(|0|) = [] pi(n__indx) = [2] pi(indx#) = [] pi(n__from) = [1] pi(from#) = [1] pi(activate) = [1] pi(dbl) = [1] pi(n__s) = [1] pi(dbls) = [1] pi(nil) = [] pi(sel) = [1, 2] pi(indx) = [2] pi(from) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__dbl(X)) -> dbl#(X) p3: activate#(n__dbls(X)) -> dbls#(X) p4: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p5: sel#(|0|(),cons(X,Y)) -> activate#(X) p6: activate#(n__indx(X1,X2)) -> indx#(X1,X2) p7: indx#(cons(X,Y),Z) -> activate#(X) p8: activate#(n__from(X)) -> from#(X) p9: from#(X) -> activate#(X) p10: indx#(cons(X,Y),Z) -> activate#(Z) p11: indx#(cons(X,Y),Z) -> activate#(Y) p12: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p13: sel#(s(X),cons(Y,Z)) -> activate#(X) p14: dbls#(cons(X,Y)) -> activate#(Y) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__from(X)) -> from#(X) p3: from#(X) -> activate#(X) p4: activate#(n__indx(X1,X2)) -> indx#(X1,X2) p5: indx#(cons(X,Y),Z) -> activate#(Y) p6: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p7: sel#(s(X),cons(Y,Z)) -> activate#(X) p8: activate#(n__dbls(X)) -> dbls#(X) p9: dbls#(cons(X,Y)) -> activate#(Y) p10: activate#(n__dbl(X)) -> dbl#(X) p11: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p12: sel#(|0|(),cons(X,Y)) -> activate#(X) p13: indx#(cons(X,Y),Z) -> activate#(Z) p14: indx#(cons(X,Y),Z) -> activate#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: dbl#_A(x1) = max{2, x1 + 1} s_A(x1) = x1 activate#_A(x1) = max{1, x1} n__from_A(x1) = x1 + 6 from#_A(x1) = x1 + 2 n__indx_A(x1,x2) = max{x1 + 17, x2 + 14} indx#_A(x1,x2) = max{13, x1 + 2, x2 + 2} cons_A(x1,x2) = max{x1 + 6, x2} n__sel_A(x1,x2) = max{x1 + 17, x2 + 4} sel#_A(x1,x2) = max{x1 + 3, x2 + 4} n__dbls_A(x1) = x1 + 13 dbls#_A(x1) = max{4, x1 + 2} n__dbl_A(x1) = x1 + 5 activate_A(x1) = x1 |0|_A = 0 dbl_A(x1) = x1 + 5 n__s_A(x1) = x1 dbls_A(x1) = x1 + 13 nil_A = 13 sel_A(x1,x2) = max{x1 + 17, x2 + 4} indx_A(x1,x2) = max{x1 + 17, x2 + 14} from_A(x1) = x1 + 6 precedence: n__dbl = dbl > s = n__s > indx# = dbls# > n__sel = sel > sel# > activate = indx = from > dbls > cons > activate# > dbl# = from# = n__dbls > n__indx > n__from = |0| > nil partial status: pi(dbl#) = [1] pi(s) = [1] pi(activate#) = [1] pi(n__from) = [1] pi(from#) = [] pi(n__indx) = [] pi(indx#) = [] pi(cons) = [1, 2] pi(n__sel) = [] pi(sel#) = [1] pi(n__dbls) = [] pi(dbls#) = [1] pi(n__dbl) = [1] pi(activate) = [1] pi(|0|) = [] pi(dbl) = [1] pi(n__s) = [1] pi(dbls) = [] pi(nil) = [] pi(sel) = [] pi(indx) = [] pi(from) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__from(X)) -> from#(X) p3: from#(X) -> activate#(X) p4: indx#(cons(X,Y),Z) -> activate#(Y) p5: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p6: sel#(s(X),cons(Y,Z)) -> activate#(X) p7: activate#(n__dbls(X)) -> dbls#(X) p8: dbls#(cons(X,Y)) -> activate#(Y) p9: activate#(n__dbl(X)) -> dbl#(X) p10: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p11: sel#(|0|(),cons(X,Y)) -> activate#(X) p12: indx#(cons(X,Y),Z) -> activate#(Z) p13: indx#(cons(X,Y),Z) -> activate#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__dbl(X)) -> dbl#(X) p3: activate#(n__dbls(X)) -> dbls#(X) p4: dbls#(cons(X,Y)) -> activate#(Y) p5: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p6: sel#(|0|(),cons(X,Y)) -> activate#(X) p7: activate#(n__from(X)) -> from#(X) p8: from#(X) -> activate#(X) p9: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p10: sel#(s(X),cons(Y,Z)) -> activate#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: dbl#_A(x1) = x1 + 6 s_A(x1) = x1 activate#_A(x1) = max{4, x1 + 1} n__dbl_A(x1) = x1 + 5 n__dbls_A(x1) = x1 + 22 dbls#_A(x1) = x1 + 6 cons_A(x1,x2) = max{3, x1 - 1, x2} n__sel_A(x1,x2) = max{20, x1 + 11, x2 + 13} sel#_A(x1,x2) = max{x1 + 10, x2 + 6} |0|_A = 0 n__from_A(x1) = x1 + 5 from#_A(x1) = x1 + 5 activate_A(x1) = x1 dbl_A(x1) = x1 + 5 n__s_A(x1) = x1 dbls_A(x1) = x1 + 22 nil_A = 21 sel_A(x1,x2) = max{20, x1 + 11, x2 + 13} indx_A(x1,x2) = max{20, x1 + 15, x2 + 14} n__indx_A(x1,x2) = max{20, x1 + 15, x2 + 14} from_A(x1) = x1 + 5 precedence: n__sel = sel > cons = |0| = n__from = activate = dbl = dbls = nil = indx = n__indx = from > n__dbl > s = dbls# = n__s > n__dbls = sel# > from# > activate# > dbl# partial status: pi(dbl#) = [1] pi(s) = [1] pi(activate#) = [1] pi(n__dbl) = [] pi(n__dbls) = [1] pi(dbls#) = [1] pi(cons) = [] pi(n__sel) = [] pi(sel#) = [] pi(|0|) = [] pi(n__from) = [] pi(from#) = [1] pi(activate) = [1] pi(dbl) = [] pi(n__s) = [1] pi(dbls) = [1] pi(nil) = [] pi(sel) = [] pi(indx) = [] pi(n__indx) = [] pi(from) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__dbl(X)) -> dbl#(X) p3: activate#(n__dbls(X)) -> dbls#(X) p4: dbls#(cons(X,Y)) -> activate#(Y) p5: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p6: sel#(|0|(),cons(X,Y)) -> activate#(X) p7: from#(X) -> activate#(X) p8: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p9: sel#(s(X),cons(Y,Z)) -> activate#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p3: sel#(s(X),cons(Y,Z)) -> activate#(X) p4: activate#(n__dbls(X)) -> dbls#(X) p5: dbls#(cons(X,Y)) -> activate#(Y) p6: activate#(n__dbl(X)) -> dbl#(X) p7: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p8: sel#(|0|(),cons(X,Y)) -> activate#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: dbl#_A(x1) = max{3, x1 + 1} s_A(x1) = max{6, x1} activate#_A(x1) = max{2, x1 - 1} n__sel_A(x1,x2) = max{33, x1 + 13, x2 + 11} sel#_A(x1,x2) = max{12, x1 - 1, x2 + 10} cons_A(x1,x2) = max{x1 - 11, x2} n__dbls_A(x1) = max{17, x1 + 16} dbls#_A(x1) = x1 + 2 n__dbl_A(x1) = max{10, x1 + 5} activate_A(x1) = x1 |0|_A = 11 dbl_A(x1) = max{10, x1 + 5} n__s_A(x1) = max{6, x1} dbls_A(x1) = max{17, x1 + 16} nil_A = 23 sel_A(x1,x2) = max{33, x1 + 13, x2 + 11} indx_A(x1,x2) = max{25, x1 + 23, x2 + 24} n__indx_A(x1,x2) = max{25, x1 + 23, x2 + 24} from_A(x1) = max{0, x1 - 11} n__from_A(x1) = max{0, x1 - 11} precedence: s = n__sel = n__dbl = activate = |0| = dbl = dbls = nil = sel = from = n__from > dbls# > activate# = sel# = n__dbls = n__s > dbl# > cons = indx > n__indx partial status: pi(dbl#) = [1] pi(s) = [] pi(activate#) = [] pi(n__sel) = [] pi(sel#) = [] pi(cons) = [] pi(n__dbls) = [] pi(dbls#) = [1] pi(n__dbl) = [] pi(activate) = [] pi(|0|) = [] pi(dbl) = [] pi(n__s) = [] pi(dbls) = [] pi(nil) = [] pi(sel) = [] pi(indx) = [1] pi(n__indx) = [1, 2] pi(from) = [] pi(n__from) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p3: sel#(s(X),cons(Y,Z)) -> activate#(X) p4: dbls#(cons(X,Y)) -> activate#(Y) p5: activate#(n__dbl(X)) -> dbl#(X) p6: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p7: sel#(|0|(),cons(X,Y)) -> activate#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__dbl(X)) -> dbl#(X) p3: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p4: sel#(|0|(),cons(X,Y)) -> activate#(X) p5: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p6: sel#(s(X),cons(Y,Z)) -> activate#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: dbl#_A(x1) = max{2, x1 + 1} s_A(x1) = max{2, x1} activate#_A(x1) = x1 n__dbl_A(x1) = x1 + 2 n__sel_A(x1,x2) = max{10, x1 + 8, x2 + 7} sel#_A(x1,x2) = max{6, x1 + 1, x2 + 2} |0|_A = 0 cons_A(x1,x2) = max{x1 + 4, x2} activate_A(x1) = x1 dbl_A(x1) = x1 + 2 n__s_A(x1) = max{2, x1} dbls_A(x1) = x1 + 2 nil_A = 0 n__dbls_A(x1) = x1 + 2 sel_A(x1,x2) = max{10, x1 + 8, x2 + 7} indx_A(x1,x2) = max{x1 + 15, x2 + 19} n__indx_A(x1,x2) = max{x1 + 15, x2 + 19} from_A(x1) = max{7, x1 + 4} n__from_A(x1) = max{7, x1 + 4} precedence: dbls = n__dbls > nil > n__dbl = n__sel = dbl = sel = indx = n__indx > s = sel# = n__s > |0| = activate = from > cons > activate# > dbl# > n__from partial status: pi(dbl#) = [1] pi(s) = [1] pi(activate#) = [1] pi(n__dbl) = [1] pi(n__sel) = [1, 2] pi(sel#) = [1, 2] pi(|0|) = [] pi(cons) = [] pi(activate) = [1] pi(dbl) = [1] pi(n__s) = [1] pi(dbls) = [] pi(nil) = [] pi(n__dbls) = [] pi(sel) = [1, 2] pi(indx) = [1] pi(n__indx) = [1] pi(from) = [] pi(n__from) = [1] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__dbl(X)) -> dbl#(X) p3: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p4: sel#(|0|(),cons(X,Y)) -> activate#(X) p5: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p3: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p4: sel#(|0|(),cons(X,Y)) -> activate#(X) p5: activate#(n__dbl(X)) -> dbl#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: dbl#_A(x1) = x1 + 11 s_A(x1) = max{9, x1} activate#_A(x1) = x1 + 11 n__sel_A(x1,x2) = max{x1 + 16, x2 + 12} sel#_A(x1,x2) = max{x1 + 17, x2 + 22} cons_A(x1,x2) = max{1, x1 - 7, x2} activate_A(x1) = max{4, x1} |0|_A = 2 n__dbl_A(x1) = x1 dbl_A(x1) = max{3, x1} n__s_A(x1) = max{9, x1} dbls_A(x1) = max{4, x1} nil_A = 0 n__dbls_A(x1) = x1 sel_A(x1,x2) = max{x1 + 16, x2 + 12} indx_A(x1,x2) = max{37, x1 + 28, x2 + 33} n__indx_A(x1,x2) = max{37, x1 + 28, x2 + 33} from_A(x1) = max{3, x1 - 7} n__from_A(x1) = max{2, x1 - 7} precedence: dbl# = s = activate# = n__sel = sel# = activate = |0| = n__dbl = dbl = n__s = dbls = n__dbls = sel = from > nil = n__from > cons = indx = n__indx partial status: pi(dbl#) = [] pi(s) = [] pi(activate#) = [] pi(n__sel) = [] pi(sel#) = [] pi(cons) = [] pi(activate) = [] pi(|0|) = [] pi(n__dbl) = [] pi(dbl) = [] pi(n__s) = [] pi(dbls) = [] pi(nil) = [] pi(n__dbls) = [] pi(sel) = [] pi(indx) = [2] pi(n__indx) = [2] pi(from) = [] pi(n__from) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__sel(X1,X2)) -> sel#(X1,X2) p3: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) p4: activate#(n__dbl(X)) -> dbl#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p4} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> activate#(X) p2: activate#(n__dbl(X)) -> dbl#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: dbl#_A(x1) = max{3, x1 + 2} s_A(x1) = x1 activate#_A(x1) = x1 + 2 n__dbl_A(x1) = x1 + 1 precedence: dbl# = s = activate# = n__dbl partial status: pi(dbl#) = [1] pi(s) = [1] pi(activate#) = [1] pi(n__dbl) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__dbl(X)) -> dbl#(X) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(activate(X),activate(Z)) and R consists of: r1: dbl(|0|()) -> |0|() r2: dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) r3: dbls(nil()) -> nil() r4: dbls(cons(X,Y)) -> cons(n__dbl(activate(X)),n__dbls(activate(Y))) r5: sel(|0|(),cons(X,Y)) -> activate(X) r6: sel(s(X),cons(Y,Z)) -> sel(activate(X),activate(Z)) r7: indx(nil(),X) -> nil() r8: indx(cons(X,Y),Z) -> cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: s(X) -> n__s(X) r11: dbl(X) -> n__dbl(X) r12: dbls(X) -> n__dbls(X) r13: sel(X1,X2) -> n__sel(X1,X2) r14: indx(X1,X2) -> n__indx(X1,X2) r15: from(X) -> n__from(X) r16: activate(n__s(X)) -> s(X) r17: activate(n__dbl(X)) -> dbl(X) r18: activate(n__dbls(X)) -> dbls(X) r19: activate(n__sel(X1,X2)) -> sel(X1,X2) r20: activate(n__indx(X1,X2)) -> indx(X1,X2) r21: activate(n__from(X)) -> from(X) r22: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: sel#_A(x1,x2) = max{x1 + 8, x2 + 8} s_A(x1) = max{2, x1} cons_A(x1,x2) = max{13, x1 - 6, x2} activate_A(x1) = x1 dbl_A(x1) = x1 + 5 |0|_A = 0 n__s_A(x1) = max{2, x1} n__dbl_A(x1) = x1 + 5 dbls_A(x1) = max{14, x1 + 12} nil_A = 15 n__dbls_A(x1) = max{14, x1 + 12} sel_A(x1,x2) = max{x1 + 10, x2 + 17} indx_A(x1,x2) = max{x1 + 25, x2 + 18} n__sel_A(x1,x2) = max{x1 + 10, x2 + 17} n__indx_A(x1,x2) = max{x1 + 25, x2 + 18} from_A(x1) = max{14, x1 - 1} n__from_A(x1) = max{14, x1 - 1} precedence: from = n__from > sel# = indx = n__indx > dbl = |0| = n__dbl > s = cons = n__s = dbls = nil = n__dbls > activate = sel = n__sel partial status: pi(sel#) = [1] pi(s) = [1] pi(cons) = [] pi(activate) = [1] pi(dbl) = [1] pi(|0|) = [] pi(n__s) = [1] pi(n__dbl) = [1] pi(dbls) = [1] pi(nil) = [] pi(n__dbls) = [1] pi(sel) = [] pi(indx) = [] pi(n__sel) = [] pi(n__indx) = [] pi(from) = [] pi(n__from) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.