YES We show the termination of the TRS R: a__minus(|0|(),Y) -> |0|() a__minus(s(X),s(Y)) -> a__minus(X,Y) a__geq(X,|0|()) -> true() a__geq(|0|(),s(Y)) -> false() a__geq(s(X),s(Y)) -> a__geq(X,Y) a__div(|0|(),s(Y)) -> |0|() a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) a__if(true(),X,Y) -> mark(X) a__if(false(),X,Y) -> mark(Y) mark(minus(X1,X2)) -> a__minus(X1,X2) mark(geq(X1,X2)) -> a__geq(X1,X2) mark(div(X1,X2)) -> a__div(mark(X1),X2) mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) mark(|0|()) -> |0|() mark(s(X)) -> s(mark(X)) mark(true()) -> true() mark(false()) -> false() a__minus(X1,X2) -> minus(X1,X2) a__geq(X1,X2) -> geq(X1,X2) a__div(X1,X2) -> div(X1,X2) a__if(X1,X2,X3) -> if(X1,X2,X3) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__minus#(s(X),s(Y)) -> a__minus#(X,Y) p2: a__geq#(s(X),s(Y)) -> a__geq#(X,Y) p3: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p4: a__div#(s(X),s(Y)) -> a__geq#(X,Y) p5: a__if#(true(),X,Y) -> mark#(X) p6: a__if#(false(),X,Y) -> mark#(Y) p7: mark#(minus(X1,X2)) -> a__minus#(X1,X2) p8: mark#(geq(X1,X2)) -> a__geq#(X1,X2) p9: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p10: mark#(div(X1,X2)) -> mark#(X1) p11: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),X2,X3) p12: mark#(if(X1,X2,X3)) -> mark#(X1) p13: mark#(s(X)) -> mark#(X) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p3, p5, p6, p9, p10, p11, p12, p13} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(if(X1,X2,X3)) -> mark#(X1) p3: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),X2,X3) p4: a__if#(false(),X,Y) -> mark#(Y) p5: mark#(div(X1,X2)) -> mark#(X1) p6: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p7: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p8: a__if#(true(),X,Y) -> mark#(X) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{13, x1} s_A(x1) = max{78, x1 + 20} if_A(x1,x2,x3) = max{x1 + 12, x2 + 34, x3 + 157} a__if#_A(x1,x2,x3) = max{x1, x2 + 34, x3 + 156} mark_A(x1) = max{21, x1 + 12} false_A = 14 div_A(x1,x2) = max{117, x1 + 107} a__div#_A(x1,x2) = x1 + 93 a__geq_A(x1,x2) = x1 + 112 minus_A(x1,x2) = 5 |0|_A = 15 true_A = 14 a__minus_A(x1,x2) = 16 a__div_A(x1,x2) = max{118, x1 + 107} a__if_A(x1,x2,x3) = max{x1 + 12, x2 + 46, x3 + 169} geq_A(x1,x2) = x1 + 104 precedence: a__div# = a__geq = minus = true = geq > mark# = false = |0| > mark = div = a__div = a__if > a__minus > if > s = a__if# partial status: pi(mark#) = [1] pi(s) = [] pi(if) = [] pi(a__if#) = [2, 3] pi(mark) = [] pi(false) = [] pi(div) = [] pi(a__div#) = [1] pi(a__geq) = [1] pi(minus) = [] pi(|0|) = [] pi(true) = [] pi(a__minus) = [] pi(a__div) = [] pi(a__if) = [] pi(geq) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(if(X1,X2,X3)) -> mark#(X1) p3: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),X2,X3) p4: mark#(div(X1,X2)) -> mark#(X1) p5: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p6: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p7: a__if#(true(),X,Y) -> mark#(X) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p3: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p4: a__if#(true(),X,Y) -> mark#(X) p5: mark#(div(X1,X2)) -> mark#(X1) p6: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),X2,X3) p7: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 37 s_A(x1) = max{18, x1} div_A(x1,x2) = max{x1 + 35, x2 + 37} a__div#_A(x1,x2) = max{x1 + 56, x2 + 74} mark_A(x1) = x1 + 15 a__if#_A(x1,x2,x3) = max{x1 + 2, x2 + 37, x3 + 46} a__geq_A(x1,x2) = x1 + 30 minus_A(x1,x2) = max{1, x1 - 16} |0|_A = 4 true_A = 29 if_A(x1,x2,x3) = max{x1 + 4, x2 + 5, x3 + 10} a__minus_A(x1,x2) = max{6, x1 - 12} a__div_A(x1,x2) = max{x1 + 35, x2 + 52} a__if_A(x1,x2,x3) = max{x1 + 4, x2 + 15, x3 + 25} false_A = 0 geq_A(x1,x2) = x1 + 29 precedence: s = mark = a__geq = minus = a__div = a__if > div = geq > mark# = a__div# = a__if# = |0| = true = a__minus = false > if partial status: pi(mark#) = [] pi(s) = [] pi(div) = [2] pi(a__div#) = [] pi(mark) = [] pi(a__if#) = [] pi(a__geq) = [] pi(minus) = [] pi(|0|) = [] pi(true) = [] pi(if) = [1, 3] pi(a__minus) = [] pi(a__div) = [] pi(a__if) = [] pi(false) = [] pi(geq) = [1] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p3: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p4: a__if#(true(),X,Y) -> mark#(X) p5: mark#(div(X1,X2)) -> mark#(X1) p6: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(if(X1,X2,X3)) -> mark#(X1) p3: mark#(div(X1,X2)) -> mark#(X1) p4: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p5: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p6: a__if#(true(),X,Y) -> mark#(X) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 15 s_A(x1) = max{11, x1} if_A(x1,x2,x3) = max{x1 + 1, x2, x3 + 2} div_A(x1,x2) = max{x1 + 14, x2 + 12} a__div#_A(x1,x2) = max{x1 + 6, x2 + 27} mark_A(x1) = x1 + 18 a__if#_A(x1,x2,x3) = max{x1 - 2, x2 + 15, x3 + 11} a__geq_A(x1,x2) = x2 + 29 minus_A(x1,x2) = 2 |0|_A = 1 true_A = 13 a__minus_A(x1,x2) = 2 a__div_A(x1,x2) = max{x1 + 14, x2 + 30} a__if_A(x1,x2,x3) = max{x1 + 1, x2 + 18, x3 + 19} false_A = 0 geq_A(x1,x2) = x2 + 29 precedence: a__geq = geq > mark# = s = if = div = a__div# = mark = a__if# = minus = |0| = true = a__minus = a__div = a__if = false partial status: pi(mark#) = [] pi(s) = [] pi(if) = [] pi(div) = [] pi(a__div#) = [] pi(mark) = [] pi(a__if#) = [] pi(a__geq) = [] pi(minus) = [] pi(|0|) = [] pi(true) = [] pi(a__minus) = [] pi(a__div) = [] pi(a__if) = [] pi(false) = [] pi(geq) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(div(X1,X2)) -> mark#(X1) p3: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p4: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p5: a__if#(true(),X,Y) -> mark#(X) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p3: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p4: a__if#(true(),X,Y) -> mark#(X) p5: mark#(div(X1,X2)) -> mark#(X1) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{0, x1 - 38} s_A(x1) = max{15, x1} div_A(x1,x2) = max{x1 + 118, x2 + 167} a__div#_A(x1,x2) = x2 + 129 mark_A(x1) = x1 + 67 a__if#_A(x1,x2,x3) = max{128, x1 + 14, x2 - 38, x3 + 114} a__geq_A(x1,x2) = 32 minus_A(x1,x2) = max{27, x2 + 11} |0|_A = 30 true_A = 31 a__minus_A(x1,x2) = max{47, x2 + 32} a__div_A(x1,x2) = max{x1 + 118, x2 + 234} a__if_A(x1,x2,x3) = max{x2 + 67, x3 + 90} false_A = 14 if_A(x1,x2,x3) = max{x2 + 48, x3 + 23} geq_A(x1,x2) = 31 precedence: minus > a__geq = true = geq > |0| > false > a__minus > mark# = s = div = a__div# = mark = a__if# = a__div = a__if = if partial status: pi(mark#) = [] pi(s) = [] pi(div) = [] pi(a__div#) = [] pi(mark) = [] pi(a__if#) = [] pi(a__geq) = [] pi(minus) = [2] pi(|0|) = [] pi(true) = [] pi(a__minus) = [] pi(a__div) = [] pi(a__if) = [] pi(false) = [] pi(if) = [] pi(geq) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p3: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p4: a__if#(true(),X,Y) -> mark#(X) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p3: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p4: a__if#(true(),X,Y) -> mark#(X) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 9 s_A(x1) = x1 + 16 div_A(x1,x2) = x1 + 11 a__div#_A(x1,x2) = x1 + 20 mark_A(x1) = x1 a__if#_A(x1,x2,x3) = max{x1 - 5, x2 + 9, x3 + 36} a__geq_A(x1,x2) = x1 + 39 minus_A(x1,x2) = max{0, x1 - 17} |0|_A = 0 true_A = 38 a__minus_A(x1,x2) = max{0, x1 - 17} a__div_A(x1,x2) = x1 + 11 a__if_A(x1,x2,x3) = max{x2, x3} false_A = 15 if_A(x1,x2,x3) = max{x2, x3} geq_A(x1,x2) = x1 + 39 precedence: mark = a__div = a__if = if > mark# = div = a__div# = a__if# = minus = |0| = a__minus = false > s = a__geq = true = geq partial status: pi(mark#) = [] pi(s) = [1] pi(div) = [] pi(a__div#) = [] pi(mark) = [] pi(a__if#) = [] pi(a__geq) = [] pi(minus) = [] pi(|0|) = [] pi(true) = [] pi(a__minus) = [] pi(a__div) = [] pi(a__if) = [] pi(false) = [] pi(if) = [] pi(geq) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p2: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p3: a__if#(true(),X,Y) -> mark#(X) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p2: a__div#(s(X),s(Y)) -> a__if#(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p3: a__if#(true(),X,Y) -> mark#(X) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{1, x1} div_A(x1,x2) = x2 + 5 a__div#_A(x1,x2) = x2 + 5 mark_A(x1) = max{19, x1 + 12} s_A(x1) = x1 a__if#_A(x1,x2,x3) = max{x1 - 12, x2, x3 + 2} a__geq_A(x1,x2) = 17 minus_A(x1,x2) = max{x1 + 2, x2 + 2} |0|_A = 0 true_A = 16 a__minus_A(x1,x2) = max{x1 + 2, x2 + 2} a__div_A(x1,x2) = max{19, x2 + 17} a__if_A(x1,x2,x3) = max{x1 - 8, x2 + 12, x3 + 19} false_A = 0 if_A(x1,x2,x3) = max{x1 - 8, x2 + 12, x3 + 19} geq_A(x1,x2) = 17 precedence: a__geq = minus = |0| = true = a__minus = false > mark = a__div = a__if > div = a__div# = geq > a__if# = if > mark# = s partial status: pi(mark#) = [1] pi(div) = [2] pi(a__div#) = [] pi(mark) = [] pi(s) = [] pi(a__if#) = [2] pi(a__geq) = [] pi(minus) = [] pi(|0|) = [] pi(true) = [] pi(a__minus) = [] pi(a__div) = [] pi(a__if) = [] pi(false) = [] pi(if) = [] pi(geq) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(div(X1,X2)) -> a__div#(mark(X1),X2) p2: a__if#(true(),X,Y) -> mark#(X) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__minus#(s(X),s(Y)) -> a__minus#(X,Y) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: a__minus#_A(x1,x2) = max{0, x1 - 2, x2 - 2} s_A(x1) = max{3, x1 + 1} precedence: a__minus# = s partial status: pi(a__minus#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__geq#(s(X),s(Y)) -> a__geq#(X,Y) and R consists of: r1: a__minus(|0|(),Y) -> |0|() r2: a__minus(s(X),s(Y)) -> a__minus(X,Y) r3: a__geq(X,|0|()) -> true() r4: a__geq(|0|(),s(Y)) -> false() r5: a__geq(s(X),s(Y)) -> a__geq(X,Y) r6: a__div(|0|(),s(Y)) -> |0|() r7: a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) r8: a__if(true(),X,Y) -> mark(X) r9: a__if(false(),X,Y) -> mark(Y) r10: mark(minus(X1,X2)) -> a__minus(X1,X2) r11: mark(geq(X1,X2)) -> a__geq(X1,X2) r12: mark(div(X1,X2)) -> a__div(mark(X1),X2) r13: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) r14: mark(|0|()) -> |0|() r15: mark(s(X)) -> s(mark(X)) r16: mark(true()) -> true() r17: mark(false()) -> false() r18: a__minus(X1,X2) -> minus(X1,X2) r19: a__geq(X1,X2) -> geq(X1,X2) r20: a__div(X1,X2) -> div(X1,X2) r21: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: a__geq#_A(x1,x2) = max{0, x1 - 2, x2 - 2} s_A(x1) = max{3, x1 + 1} precedence: a__geq# = s partial status: pi(a__geq#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.