YES We show the termination of the TRS R: active(minus(|0|(),Y)) -> mark(|0|()) active(minus(s(X),s(Y))) -> mark(minus(X,Y)) active(geq(X,|0|())) -> mark(true()) active(geq(|0|(),s(Y))) -> mark(false()) active(geq(s(X),s(Y))) -> mark(geq(X,Y)) active(div(|0|(),s(Y))) -> mark(|0|()) active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) active(if(true(),X,Y)) -> mark(X) active(if(false(),X,Y)) -> mark(Y) mark(minus(X1,X2)) -> active(minus(X1,X2)) mark(|0|()) -> active(|0|()) mark(s(X)) -> active(s(mark(X))) mark(geq(X1,X2)) -> active(geq(X1,X2)) mark(true()) -> active(true()) mark(false()) -> active(false()) mark(div(X1,X2)) -> active(div(mark(X1),X2)) mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) minus(mark(X1),X2) -> minus(X1,X2) minus(X1,mark(X2)) -> minus(X1,X2) minus(active(X1),X2) -> minus(X1,X2) minus(X1,active(X2)) -> minus(X1,X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1),X2) -> geq(X1,X2) geq(X1,mark(X2)) -> geq(X1,X2) geq(active(X1),X2) -> geq(X1,X2) geq(X1,active(X2)) -> geq(X1,X2) div(mark(X1),X2) -> div(X1,X2) div(X1,mark(X2)) -> div(X1,X2) div(active(X1),X2) -> div(X1,X2) div(X1,active(X2)) -> div(X1,X2) if(mark(X1),X2,X3) -> if(X1,X2,X3) if(X1,mark(X2),X3) -> if(X1,X2,X3) if(X1,X2,mark(X3)) -> if(X1,X2,X3) if(active(X1),X2,X3) -> if(X1,X2,X3) if(X1,active(X2),X3) -> if(X1,X2,X3) if(X1,X2,active(X3)) -> if(X1,X2,X3) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(minus(|0|(),Y)) -> mark#(|0|()) p2: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) p3: active#(minus(s(X),s(Y))) -> minus#(X,Y) p4: active#(geq(X,|0|())) -> mark#(true()) p5: active#(geq(|0|(),s(Y))) -> mark#(false()) p6: active#(geq(s(X),s(Y))) -> mark#(geq(X,Y)) p7: active#(geq(s(X),s(Y))) -> geq#(X,Y) p8: active#(div(|0|(),s(Y))) -> mark#(|0|()) p9: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p10: active#(div(s(X),s(Y))) -> if#(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|()) p11: active#(div(s(X),s(Y))) -> geq#(X,Y) p12: active#(div(s(X),s(Y))) -> s#(div(minus(X,Y),s(Y))) p13: active#(div(s(X),s(Y))) -> div#(minus(X,Y),s(Y)) p14: active#(div(s(X),s(Y))) -> minus#(X,Y) p15: active#(if(true(),X,Y)) -> mark#(X) p16: active#(if(false(),X,Y)) -> mark#(Y) p17: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p18: mark#(|0|()) -> active#(|0|()) p19: mark#(s(X)) -> active#(s(mark(X))) p20: mark#(s(X)) -> s#(mark(X)) p21: mark#(s(X)) -> mark#(X) p22: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p23: mark#(true()) -> active#(true()) p24: mark#(false()) -> active#(false()) p25: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p26: mark#(div(X1,X2)) -> div#(mark(X1),X2) p27: mark#(div(X1,X2)) -> mark#(X1) p28: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p29: mark#(if(X1,X2,X3)) -> if#(mark(X1),X2,X3) p30: mark#(if(X1,X2,X3)) -> mark#(X1) p31: minus#(mark(X1),X2) -> minus#(X1,X2) p32: minus#(X1,mark(X2)) -> minus#(X1,X2) p33: minus#(active(X1),X2) -> minus#(X1,X2) p34: minus#(X1,active(X2)) -> minus#(X1,X2) p35: s#(mark(X)) -> s#(X) p36: s#(active(X)) -> s#(X) p37: geq#(mark(X1),X2) -> geq#(X1,X2) p38: geq#(X1,mark(X2)) -> geq#(X1,X2) p39: geq#(active(X1),X2) -> geq#(X1,X2) p40: geq#(X1,active(X2)) -> geq#(X1,X2) p41: div#(mark(X1),X2) -> div#(X1,X2) p42: div#(X1,mark(X2)) -> div#(X1,X2) p43: div#(active(X1),X2) -> div#(X1,X2) p44: div#(X1,active(X2)) -> div#(X1,X2) p45: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p46: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) p47: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p48: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p49: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p50: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p2, p6, p9, p15, p16, p17, p19, p21, p22, p25, p27, p28, p30} {p31, p32, p33, p34} {p37, p38, p39, p40} {p45, p46, p47, p48, p49, p50} {p35, p36} {p41, p42, p43, p44} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(if(false(),X,Y)) -> mark#(Y) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(div(X1,X2)) -> mark#(X1) p5: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p6: active#(if(true(),X,Y)) -> mark#(X) p7: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p8: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p9: mark#(s(X)) -> mark#(X) p10: mark#(s(X)) -> active#(s(mark(X))) p11: active#(geq(s(X),s(Y))) -> mark#(geq(X,Y)) p12: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p13: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 26 if_A(x1,x2,x3) = max{x1 + 22, x2, x3 + 50} active#_A(x1) = x1 + 26 mark_A(x1) = max{1, x1} false_A = 2 div_A(x1,x2) = max{63, x1 + 47, x2 + 44} true_A = 17 geq_A(x1,x2) = max{19, x2 + 3} s_A(x1) = max{2, x1} minus_A(x1,x2) = max{16, x2 - 4} |0|_A = 13 active_A(x1) = max{2, x1} precedence: mark = true = geq = s = |0| = active > false > mark# = if = active# = div = minus partial status: pi(mark#) = [] pi(if) = [] pi(active#) = [] pi(mark) = [] pi(false) = [] pi(div) = [2] pi(true) = [] pi(geq) = [] pi(s) = [] pi(minus) = [] pi(|0|) = [] pi(active) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: mark#(if(X1,X2,X3)) -> mark#(X1) p3: mark#(div(X1,X2)) -> mark#(X1) p4: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p5: active#(if(true(),X,Y)) -> mark#(X) p6: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p7: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p8: mark#(s(X)) -> mark#(X) p9: mark#(s(X)) -> active#(s(mark(X))) p10: active#(geq(s(X),s(Y))) -> mark#(geq(X,Y)) p11: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p12: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) p3: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p4: active#(geq(s(X),s(Y))) -> mark#(geq(X,Y)) p5: mark#(s(X)) -> active#(s(mark(X))) p6: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p7: mark#(s(X)) -> mark#(X) p8: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p9: active#(if(true(),X,Y)) -> mark#(X) p10: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p11: mark#(div(X1,X2)) -> mark#(X1) p12: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 4 if_A(x1,x2,x3) = 43 active#_A(x1) = max{1, x1 - 39} mark_A(x1) = 30 minus_A(x1,x2) = 43 s_A(x1) = 42 geq_A(x1,x2) = 43 div_A(x1,x2) = 43 |0|_A = 39 true_A = 79 active_A(x1) = max{30, x1 - 49} false_A = 31 precedence: mark# = if = active# = mark = minus = s = geq = div = |0| = true = active = false partial status: pi(mark#) = [] pi(if) = [] pi(active#) = [] pi(mark) = [] pi(minus) = [] pi(s) = [] pi(geq) = [] pi(div) = [] pi(|0|) = [] pi(true) = [] pi(active) = [] pi(false) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) p3: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p4: active#(geq(s(X),s(Y))) -> mark#(geq(X,Y)) p5: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p6: mark#(s(X)) -> mark#(X) p7: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p8: active#(if(true(),X,Y)) -> mark#(X) p9: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p10: mark#(div(X1,X2)) -> mark#(X1) p11: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(if(true(),X,Y)) -> mark#(X) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(div(X1,X2)) -> mark#(X1) p5: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p6: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p7: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p8: active#(geq(s(X),s(Y))) -> mark#(geq(X,Y)) p9: mark#(s(X)) -> mark#(X) p10: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p11: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{0, x1 - 12} if_A(x1,x2,x3) = max{x1 + 13, x2, x3} active#_A(x1) = max{0, x1 - 12} mark_A(x1) = x1 true_A = 1 div_A(x1,x2) = x1 + 17 s_A(x1) = x1 + 16 geq_A(x1,x2) = 14 minus_A(x1,x2) = 0 |0|_A = 0 active_A(x1) = x1 false_A = 0 precedence: if = mark = div = |0| = active > mark# = active# = true = s = geq = minus = false partial status: pi(mark#) = [] pi(if) = [] pi(active#) = [] pi(mark) = [] pi(true) = [] pi(div) = [] pi(s) = [1] pi(geq) = [] pi(minus) = [] pi(|0|) = [] pi(active) = [] pi(false) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(if(true(),X,Y)) -> mark#(X) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p5: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p6: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p7: active#(geq(s(X),s(Y))) -> mark#(geq(X,Y)) p8: mark#(s(X)) -> mark#(X) p9: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p10: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) p3: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p4: active#(geq(s(X),s(Y))) -> mark#(geq(X,Y)) p5: mark#(s(X)) -> mark#(X) p6: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p7: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p8: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p9: active#(if(true(),X,Y)) -> mark#(X) p10: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{92, x1 + 9} if_A(x1,x2,x3) = max{x1 + 96, x2 + 14, x3 + 97} active#_A(x1) = max{7, x1 - 5} mark_A(x1) = x1 + 5 minus_A(x1,x2) = max{27, x1 - 57} s_A(x1) = max{154, x1 + 99} geq_A(x1,x2) = max{7, x1 - 1} div_A(x1,x2) = x1 + 379 |0|_A = 22 true_A = 1 active_A(x1) = max{3, x1} false_A = 16 precedence: mark = minus = geq = true > if = div = |0| > active# > mark# = s = active > false partial status: pi(mark#) = [1] pi(if) = [] pi(active#) = [] pi(mark) = [] pi(minus) = [] pi(s) = [] pi(geq) = [] pi(div) = [1] pi(|0|) = [] pi(true) = [] pi(active) = [1] pi(false) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) p3: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p4: mark#(s(X)) -> mark#(X) p5: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p6: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p7: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p8: active#(if(true(),X,Y)) -> mark#(X) p9: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(if(true(),X,Y)) -> mark#(X) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p5: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p6: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p7: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) p8: mark#(s(X)) -> mark#(X) p9: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{48, x1 - 11} if_A(x1,x2,x3) = max{90, x1 + 60, x2, x3} active#_A(x1) = max{48, x1 - 11} mark_A(x1) = max{20, x1} true_A = 21 div_A(x1,x2) = max{94, x2 + 68} s_A(x1) = max{22, x1} geq_A(x1,x2) = max{2, x2 - 2} minus_A(x1,x2) = x2 + 25 |0|_A = 24 active_A(x1) = max{4, x1} false_A = 1 precedence: mark# = if = active# = mark = true = div = s = geq = minus = |0| = active = false partial status: pi(mark#) = [] pi(if) = [] pi(active#) = [] pi(mark) = [] pi(true) = [] pi(div) = [] pi(s) = [] pi(geq) = [] pi(minus) = [] pi(|0|) = [] pi(active) = [] pi(false) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(if(true(),X,Y)) -> mark#(X) p3: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p4: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p5: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p6: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) p7: mark#(s(X)) -> mark#(X) p8: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) p3: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p4: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p5: mark#(s(X)) -> mark#(X) p6: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p7: active#(if(true(),X,Y)) -> mark#(X) p8: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{745, x1 + 420} if_A(x1,x2,x3) = max{x1 + 156, x2 + 27, x3 + 10} active#_A(x1) = max{713, x1 + 414} mark_A(x1) = x1 minus_A(x1,x2) = max{185, x1 - 34} s_A(x1) = max{468, x1 + 226} div_A(x1,x2) = x1 + 276 geq_A(x1,x2) = x1 + 294 |0|_A = 177 true_A = 176 active_A(x1) = max{11, x1} false_A = 12 precedence: mark# = if = active# = mark = minus = s = div = geq = |0| = true = active = false partial status: pi(mark#) = [1] pi(if) = [] pi(active#) = [] pi(mark) = [1] pi(minus) = [] pi(s) = [] pi(div) = [] pi(geq) = [] pi(|0|) = [] pi(true) = [] pi(active) = [1] pi(false) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) p2: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p3: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p4: mark#(s(X)) -> mark#(X) p5: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p6: active#(if(true(),X,Y)) -> mark#(X) p7: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(minus(s(X),s(Y))) -> mark#(minus(X,Y)) p2: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p3: active#(if(true(),X,Y)) -> mark#(X) p4: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p5: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p6: mark#(s(X)) -> mark#(X) p7: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 29 minus_A(x1,x2) = max{18, x1 - 12} s_A(x1) = max{194, x1 + 78} mark#_A(x1) = x1 + 29 div_A(x1,x2) = max{261, x1 + 155} mark_A(x1) = max{4, x1} if_A(x1,x2,x3) = max{x1 + 5, x2 + 9, x3 + 3} true_A = 11 geq_A(x1,x2) = x1 + 200 |0|_A = 17 active_A(x1) = max{1, x1} false_A = 77 precedence: active# = minus = s = mark# = div = mark = if = true = geq = |0| = active = false partial status: pi(active#) = [] pi(minus) = [] pi(s) = [] pi(mark#) = [1] pi(div) = [] pi(mark) = [1] pi(if) = [] pi(true) = [] pi(geq) = [] pi(|0|) = [] pi(active) = [1] pi(false) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p2: active#(if(true(),X,Y)) -> mark#(X) p3: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p4: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p5: mark#(s(X)) -> mark#(X) p6: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p2: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p3: mark#(minus(X1,X2)) -> active#(minus(X1,X2)) p4: active#(if(true(),X,Y)) -> mark#(X) p5: mark#(s(X)) -> mark#(X) p6: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{1, x1} div_A(x1,x2) = max{20, x1 + 8} active#_A(x1) = max{7, x1} mark_A(x1) = max{4, x1} s_A(x1) = max{46, x1 + 16} if_A(x1,x2,x3) = max{x1 + 3, x2 + 8, x3 + 46} geq_A(x1,x2) = x1 + 17 minus_A(x1,x2) = 11 |0|_A = 8 true_A = 5 active_A(x1) = max{5, x1} false_A = 5 precedence: div > mark# > active# = mark = s = if = geq = minus = |0| = true = active = false partial status: pi(mark#) = [1] pi(div) = [] pi(active#) = [1] pi(mark) = [1] pi(s) = [] pi(if) = [3] pi(geq) = [1] pi(minus) = [] pi(|0|) = [] pi(true) = [] pi(active) = [1] pi(false) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p2: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p3: active#(if(true(),X,Y)) -> mark#(X) p4: mark#(s(X)) -> mark#(X) p5: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p2: active#(if(true(),X,Y)) -> mark#(X) p3: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p4: active#(div(s(X),s(Y))) -> mark#(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) p5: mark#(s(X)) -> mark#(X) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{18, x1} div_A(x1,x2) = max{185, x1 + 151} active#_A(x1) = max{9, x1} mark_A(x1) = max{4, x1} if_A(x1,x2,x3) = max{207, x1 + 102, x2 + 5, x3 + 197} true_A = 1 geq_A(x1,x2) = max{105, x1 + 2} s_A(x1) = max{56, x1 + 17} minus_A(x1,x2) = max{11, x1 - 5} |0|_A = 10 active_A(x1) = max{2, x1} false_A = 3 precedence: div > mark# = active# = mark = if = true = geq = s = minus = |0| = active = false partial status: pi(mark#) = [1] pi(div) = [] pi(active#) = [1] pi(mark) = [1] pi(if) = [2] pi(true) = [] pi(geq) = [1] pi(s) = [] pi(minus) = [] pi(|0|) = [] pi(active) = [1] pi(false) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p2: active#(if(true(),X,Y)) -> mark#(X) p3: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) p4: mark#(s(X)) -> mark#(X) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p2: active#(if(true(),X,Y)) -> mark#(X) p3: mark#(s(X)) -> mark#(X) p4: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 23 div_A(x1,x2) = 14 active#_A(x1) = x1 mark_A(x1) = 0 if_A(x1,x2,x3) = 23 true_A = 23 s_A(x1) = 0 geq_A(x1,x2) = 23 active_A(x1) = max{0, x1 - 23} minus_A(x1,x2) = 23 |0|_A = 13 false_A = 12 precedence: div = |0| > mark# = if = minus > active# > geq > mark = true = s = active = false partial status: pi(mark#) = [] pi(div) = [] pi(active#) = [1] pi(mark) = [] pi(if) = [] pi(true) = [] pi(s) = [] pi(geq) = [] pi(active) = [] pi(minus) = [] pi(|0|) = [] pi(false) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(div(X1,X2)) -> active#(div(mark(X1),X2)) p2: mark#(s(X)) -> mark#(X) p3: mark#(geq(X1,X2)) -> active#(geq(X1,X2)) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 2 s_A(x1) = x1 + 2 precedence: mark# = s partial status: pi(mark#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(mark(X1),X2) -> minus#(X1,X2) p2: minus#(X1,active(X2)) -> minus#(X1,X2) p3: minus#(active(X1),X2) -> minus#(X1,X2) p4: minus#(X1,mark(X2)) -> minus#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{0, x2 - 1} mark_A(x1) = x1 active_A(x1) = x1 + 2 precedence: minus# = mark = active partial status: pi(minus#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(mark(X1),X2) -> minus#(X1,X2) p2: minus#(active(X1),X2) -> minus#(X1,X2) p3: minus#(X1,mark(X2)) -> minus#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(mark(X1),X2) -> minus#(X1,X2) p2: minus#(X1,mark(X2)) -> minus#(X1,X2) p3: minus#(active(X1),X2) -> minus#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: minus# = mark = active partial status: pi(minus#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(X1,mark(X2)) -> minus#(X1,X2) p2: minus#(active(X1),X2) -> minus#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(X1,mark(X2)) -> minus#(X1,X2) p2: minus#(active(X1),X2) -> minus#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 + 1 precedence: minus# = mark = active partial status: pi(minus#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(active(X1),X2) -> minus#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(active(X1),X2) -> minus#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: minus# = active partial status: pi(minus#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: geq#(mark(X1),X2) -> geq#(X1,X2) p2: geq#(X1,active(X2)) -> geq#(X1,X2) p3: geq#(active(X1),X2) -> geq#(X1,X2) p4: geq#(X1,mark(X2)) -> geq#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: geq#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: geq# = mark = active partial status: pi(geq#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: geq#(mark(X1),X2) -> geq#(X1,X2) p2: geq#(active(X1),X2) -> geq#(X1,X2) p3: geq#(X1,mark(X2)) -> geq#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: geq#(mark(X1),X2) -> geq#(X1,X2) p2: geq#(X1,mark(X2)) -> geq#(X1,X2) p3: geq#(active(X1),X2) -> geq#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: geq#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: geq# = mark = active partial status: pi(geq#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: geq#(X1,mark(X2)) -> geq#(X1,X2) p2: geq#(active(X1),X2) -> geq#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: geq#(X1,mark(X2)) -> geq#(X1,X2) p2: geq#(active(X1),X2) -> geq#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: geq#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: geq# = mark = active partial status: pi(geq#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: geq#(active(X1),X2) -> geq#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: geq#(active(X1),X2) -> geq#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: geq#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: geq# = active partial status: pi(geq#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p3: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p4: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p5: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p6: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 - 1, x2 - 1, x3 + 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: if# = mark = active partial status: pi(if#) = [3] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p4: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p5: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) p3: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p4: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p5: if#(X1,active(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{0, x2 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: if# = mark = active partial status: pi(if#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p4: if#(X1,active(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p4: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 - 1, x2 - 1, x3 + 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: if# = mark = active partial status: pi(if#) = [3] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p3: if#(X1,active(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 - 1, x2 + 1, x3 + 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: if# = mark = active partial status: pi(if#) = [2] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(active(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(active(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1, x3 + 1} mark_A(x1) = x1 + 2 active_A(x1) = x1 + 1 precedence: if# = mark = active partial status: pi(if#) = [1] pi(mark) = [] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(active(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(active(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 + 1, x2 + 1, x3 + 1} active_A(x1) = x1 precedence: if# = active partial status: pi(if#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = max{3, x1 + 2} mark_A(x1) = x1 active_A(x1) = x1 + 1 precedence: s# = mark = active partial status: pi(s#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: s# = active partial status: pi(s#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: div#(mark(X1),X2) -> div#(X1,X2) p2: div#(X1,active(X2)) -> div#(X1,X2) p3: div#(active(X1),X2) -> div#(X1,X2) p4: div#(X1,mark(X2)) -> div#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: div#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: div# = mark = active partial status: pi(div#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: div#(mark(X1),X2) -> div#(X1,X2) p2: div#(active(X1),X2) -> div#(X1,X2) p3: div#(X1,mark(X2)) -> div#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: div#(mark(X1),X2) -> div#(X1,X2) p2: div#(X1,mark(X2)) -> div#(X1,X2) p3: div#(active(X1),X2) -> div#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: div#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: div# = mark = active partial status: pi(div#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: div#(X1,mark(X2)) -> div#(X1,X2) p2: div#(active(X1),X2) -> div#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: div#(X1,mark(X2)) -> div#(X1,X2) p2: div#(active(X1),X2) -> div#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: div#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: div# = mark = active partial status: pi(div#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: div#(active(X1),X2) -> div#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: div#(active(X1),X2) -> div#(X1,X2) and R consists of: r1: active(minus(|0|(),Y)) -> mark(|0|()) r2: active(minus(s(X),s(Y))) -> mark(minus(X,Y)) r3: active(geq(X,|0|())) -> mark(true()) r4: active(geq(|0|(),s(Y))) -> mark(false()) r5: active(geq(s(X),s(Y))) -> mark(geq(X,Y)) r6: active(div(|0|(),s(Y))) -> mark(|0|()) r7: active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),|0|())) r8: active(if(true(),X,Y)) -> mark(X) r9: active(if(false(),X,Y)) -> mark(Y) r10: mark(minus(X1,X2)) -> active(minus(X1,X2)) r11: mark(|0|()) -> active(|0|()) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(geq(X1,X2)) -> active(geq(X1,X2)) r14: mark(true()) -> active(true()) r15: mark(false()) -> active(false()) r16: mark(div(X1,X2)) -> active(div(mark(X1),X2)) r17: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r18: minus(mark(X1),X2) -> minus(X1,X2) r19: minus(X1,mark(X2)) -> minus(X1,X2) r20: minus(active(X1),X2) -> minus(X1,X2) r21: minus(X1,active(X2)) -> minus(X1,X2) r22: s(mark(X)) -> s(X) r23: s(active(X)) -> s(X) r24: geq(mark(X1),X2) -> geq(X1,X2) r25: geq(X1,mark(X2)) -> geq(X1,X2) r26: geq(active(X1),X2) -> geq(X1,X2) r27: geq(X1,active(X2)) -> geq(X1,X2) r28: div(mark(X1),X2) -> div(X1,X2) r29: div(X1,mark(X2)) -> div(X1,X2) r30: div(active(X1),X2) -> div(X1,X2) r31: div(X1,active(X2)) -> div(X1,X2) r32: if(mark(X1),X2,X3) -> if(X1,X2,X3) r33: if(X1,mark(X2),X3) -> if(X1,X2,X3) r34: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r35: if(active(X1),X2,X3) -> if(X1,X2,X3) r36: if(X1,active(X2),X3) -> if(X1,X2,X3) r37: if(X1,X2,active(X3)) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: div#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: div# = active partial status: pi(div#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.