YES We show the termination of the TRS R: a__f(X) -> a__if(mark(X),c(),f(true())) a__if(true(),X,Y) -> mark(X) a__if(false(),X,Y) -> mark(Y) mark(f(X)) -> a__f(mark(X)) mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) mark(c()) -> c() mark(true()) -> true() mark(false()) -> false() a__f(X) -> f(X) a__if(X1,X2,X3) -> if(X1,X2,X3) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(X) -> a__if#(mark(X),c(),f(true())) p2: a__f#(X) -> mark#(X) p3: a__if#(true(),X,Y) -> mark#(X) p4: a__if#(false(),X,Y) -> mark#(Y) p5: mark#(f(X)) -> a__f#(mark(X)) p6: mark#(f(X)) -> mark#(X) p7: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),mark(X2),X3) p8: mark#(if(X1,X2,X3)) -> mark#(X1) p9: mark#(if(X1,X2,X3)) -> mark#(X2) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(X) -> a__if#(mark(X),c(),f(true())) p2: a__if#(false(),X,Y) -> mark#(Y) p3: mark#(if(X1,X2,X3)) -> mark#(X2) p4: mark#(if(X1,X2,X3)) -> mark#(X1) p5: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),mark(X2),X3) p6: a__if#(true(),X,Y) -> mark#(X) p7: mark#(f(X)) -> mark#(X) p8: mark#(f(X)) -> a__f#(mark(X)) p9: a__f#(X) -> mark#(X) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: a__f#_A(x1) = max{68, x1 + 26} a__if#_A(x1,x2,x3) = max{68, x2 + 31, x3 + 24} mark_A(x1) = x1 + 25 c_A = 0 f_A(x1) = x1 + 44 true_A = 0 false_A = 17 mark#_A(x1) = max{68, x1 + 23} if_A(x1,x2,x3) = max{46, x1 + 18, x2 + 33, x3 + 25} a__f_A(x1) = max{69, x1 + 44} a__if_A(x1,x2,x3) = max{68, x1 + 18, x2 + 33, x3 + 25} precedence: a__f# = a__if# = mark = c = f = true = false = mark# = if = a__f = a__if partial status: pi(a__f#) = [] pi(a__if#) = [] pi(mark) = [] pi(c) = [] pi(f) = [] pi(true) = [] pi(false) = [] pi(mark#) = [] pi(if) = [] pi(a__f) = [] pi(a__if) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(X) -> a__if#(mark(X),c(),f(true())) p2: a__if#(false(),X,Y) -> mark#(Y) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),mark(X2),X3) p5: a__if#(true(),X,Y) -> mark#(X) p6: mark#(f(X)) -> mark#(X) p7: mark#(f(X)) -> a__f#(mark(X)) p8: a__f#(X) -> mark#(X) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(X) -> a__if#(mark(X),c(),f(true())) p2: a__if#(true(),X,Y) -> mark#(X) p3: mark#(f(X)) -> a__f#(mark(X)) p4: a__f#(X) -> mark#(X) p5: mark#(f(X)) -> mark#(X) p6: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),mark(X2),X3) p7: a__if#(false(),X,Y) -> mark#(Y) p8: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: a__f#_A(x1) = max{11, x1 - 2} a__if#_A(x1,x2,x3) = max{11, x1 - 7, x2 - 2, x3 - 2} mark_A(x1) = x1 + 4 c_A = 0 f_A(x1) = x1 + 10 true_A = 0 mark#_A(x1) = max{11, x1 - 2} if_A(x1,x2,x3) = max{x1 + 6, x2 + 14, x3} false_A = 19 a__f_A(x1) = max{14, x1 + 10} a__if_A(x1,x2,x3) = max{x1 + 6, x2 + 14, x3 + 4} precedence: a__f# = a__if# = c = mark# = false > mark = f = true = a__f = a__if > if partial status: pi(a__f#) = [] pi(a__if#) = [] pi(mark) = [] pi(c) = [] pi(f) = [] pi(true) = [] pi(mark#) = [] pi(if) = [1] pi(false) = [] pi(a__f) = [] pi(a__if) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(X) -> a__if#(mark(X),c(),f(true())) p2: a__if#(true(),X,Y) -> mark#(X) p3: mark#(f(X)) -> a__f#(mark(X)) p4: a__f#(X) -> mark#(X) p5: mark#(f(X)) -> mark#(X) p6: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),mark(X2),X3) p7: a__if#(false(),X,Y) -> mark#(Y) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(X) -> a__if#(mark(X),c(),f(true())) p2: a__if#(false(),X,Y) -> mark#(Y) p3: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),mark(X2),X3) p4: a__if#(true(),X,Y) -> mark#(X) p5: mark#(f(X)) -> mark#(X) p6: mark#(f(X)) -> a__f#(mark(X)) p7: a__f#(X) -> mark#(X) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: a__f#_A(x1) = max{31, x1 + 11} a__if#_A(x1,x2,x3) = max{31, x1 - 4, x2 + 4, x3 + 10} mark_A(x1) = x1 + 10 c_A = 0 f_A(x1) = x1 + 20 true_A = 0 false_A = 36 mark#_A(x1) = max{31, x1 + 4} if_A(x1,x2,x3) = max{28, x1 + 7, x2 + 10, x3 + 6} a__f_A(x1) = max{30, x1 + 20} a__if_A(x1,x2,x3) = max{29, x1 + 7, x2 + 10, x3 + 10} precedence: a__f# = a__if# = c = true = false = mark# > mark = f = if = a__f = a__if partial status: pi(a__f#) = [] pi(a__if#) = [] pi(mark) = [] pi(c) = [] pi(f) = [] pi(true) = [] pi(false) = [] pi(mark#) = [] pi(if) = [] pi(a__f) = [] pi(a__if) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(X) -> a__if#(mark(X),c(),f(true())) p2: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),mark(X2),X3) p3: a__if#(true(),X,Y) -> mark#(X) p4: mark#(f(X)) -> mark#(X) p5: mark#(f(X)) -> a__f#(mark(X)) p6: a__f#(X) -> mark#(X) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(X) -> a__if#(mark(X),c(),f(true())) p2: a__if#(true(),X,Y) -> mark#(X) p3: mark#(f(X)) -> a__f#(mark(X)) p4: a__f#(X) -> mark#(X) p5: mark#(f(X)) -> mark#(X) p6: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),mark(X2),X3) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: a__f#_A(x1) = max{5, x1 - 1} a__if#_A(x1,x2,x3) = max{x1 - 1, x2 + 3, x3 - 2} mark_A(x1) = x1 c_A = 1 f_A(x1) = max{7, x1} true_A = 6 mark#_A(x1) = max{1, x1 - 1} if_A(x1,x2,x3) = max{x1, x2 + 5, x3} a__f_A(x1) = max{7, x1} a__if_A(x1,x2,x3) = max{x1, x2 + 5, x3} false_A = 1 precedence: mark = true = if = a__f = a__if > c > a__f# = f = mark# > a__if# = false partial status: pi(a__f#) = [] pi(a__if#) = [] pi(mark) = [] pi(c) = [] pi(f) = [] pi(true) = [] pi(mark#) = [] pi(if) = [] pi(a__f) = [] pi(a__if) = [] pi(false) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(X) -> a__if#(mark(X),c(),f(true())) p2: mark#(f(X)) -> a__f#(mark(X)) p3: a__f#(X) -> mark#(X) p4: mark#(f(X)) -> mark#(X) p5: mark#(if(X1,X2,X3)) -> a__if#(mark(X1),mark(X2),X3) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> a__f#(mark(X)) p2: a__f#(X) -> mark#(X) p3: mark#(f(X)) -> mark#(X) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{2, x1} f_A(x1) = max{26, x1 + 14} a__f#_A(x1) = x1 + 4 mark_A(x1) = max{11, x1 + 9} a__f_A(x1) = max{35, x1 + 14} a__if_A(x1,x2,x3) = max{13, x1 + 5, x2 + 10, x3 + 9} c_A = 3 true_A = 12 false_A = 12 if_A(x1,x2,x3) = max{12, x1 + 5, x2 + 10, x3 + 8} precedence: mark = a__f = a__if = if > f = a__f# > mark# > c = true = false partial status: pi(mark#) = [1] pi(f) = [1] pi(a__f#) = [] pi(mark) = [] pi(a__f) = [] pi(a__if) = [] pi(c) = [] pi(true) = [] pi(false) = [] pi(if) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> a__f#(mark(X)) p2: mark#(f(X)) -> mark#(X) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> mark#(X) and R consists of: r1: a__f(X) -> a__if(mark(X),c(),f(true())) r2: a__if(true(),X,Y) -> mark(X) r3: a__if(false(),X,Y) -> mark(Y) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(if(X1,X2,X3)) -> a__if(mark(X1),mark(X2),X3) r6: mark(c()) -> c() r7: mark(true()) -> true() r8: mark(false()) -> false() r9: a__f(X) -> f(X) r10: a__if(X1,X2,X3) -> if(X1,X2,X3) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 1 f_A(x1) = x1 precedence: mark# = f partial status: pi(mark#) = [1] pi(f) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.