YES We show the termination of the TRS R: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) nats(N) -> cons(N,n__nats(n__s(N))) zprimes() -> sieve(nats(s(s(|0|())))) filter(X1,X2,X3) -> n__filter(X1,X2,X3) sieve(X) -> n__sieve(X) nats(X) -> n__nats(X) s(X) -> n__s(X) activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) activate(n__sieve(X)) -> sieve(activate(X)) activate(n__nats(X)) -> nats(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: filter#(cons(X,Y),s(N),M) -> activate#(Y) p3: sieve#(cons(|0|(),Y)) -> activate#(Y) p4: sieve#(cons(s(N),Y)) -> activate#(Y) p5: zprimes#() -> sieve#(nats(s(s(|0|())))) p6: zprimes#() -> nats#(s(s(|0|()))) p7: zprimes#() -> s#(s(|0|())) p8: zprimes#() -> s#(|0|()) p9: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p10: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p11: activate#(n__filter(X1,X2,X3)) -> activate#(X2) p12: activate#(n__filter(X1,X2,X3)) -> activate#(X3) p13: activate#(n__sieve(X)) -> sieve#(activate(X)) p14: activate#(n__sieve(X)) -> activate#(X) p15: activate#(n__nats(X)) -> nats#(activate(X)) p16: activate#(n__nats(X)) -> activate#(X) p17: activate#(n__s(X)) -> s#(activate(X)) p18: activate#(n__s(X)) -> activate#(X) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p9, p10, p11, p12, p13, p14, p16, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__nats(X)) -> activate#(X) p4: activate#(n__sieve(X)) -> activate#(X) p5: activate#(n__sieve(X)) -> sieve#(activate(X)) p6: sieve#(cons(s(N),Y)) -> activate#(Y) p7: activate#(n__filter(X1,X2,X3)) -> activate#(X3) p8: activate#(n__filter(X1,X2,X3)) -> activate#(X2) p9: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p10: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p11: filter#(cons(X,Y),s(N),M) -> activate#(Y) p12: sieve#(cons(|0|(),Y)) -> activate#(Y) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{3, x1 - 2, x3} cons_A(x1,x2) = max{40, x1 + 20, x2} |0|_A = 10 activate#_A(x1) = max{12, x1 - 2} n__s_A(x1) = max{8, x1} n__nats_A(x1) = max{41, x1 + 20} n__sieve_A(x1) = x1 + 11 sieve#_A(x1) = max{12, x1 + 8} activate_A(x1) = x1 s_A(x1) = max{8, x1} n__filter_A(x1,x2,x3) = max{x1, x2 + 6, x3 + 20} filter_A(x1,x2,x3) = max{x1, x2 + 6, x3 + 20} sieve_A(x1) = x1 + 11 nats_A(x1) = max{41, x1 + 20} precedence: filter# = activate# = activate = n__filter = filter = nats > |0| = s > n__s = sieve > sieve# > cons = n__nats = n__sieve partial status: pi(filter#) = [] pi(cons) = [] pi(|0|) = [] pi(activate#) = [] pi(n__s) = [] pi(n__nats) = [1] pi(n__sieve) = [1] pi(sieve#) = [1] pi(activate) = [] pi(s) = [] pi(n__filter) = [] pi(filter) = [] pi(sieve) = [] pi(nats) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__sieve(X)) -> activate#(X) p4: activate#(n__sieve(X)) -> sieve#(activate(X)) p5: sieve#(cons(s(N),Y)) -> activate#(Y) p6: activate#(n__filter(X1,X2,X3)) -> activate#(X3) p7: activate#(n__filter(X1,X2,X3)) -> activate#(X2) p8: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p9: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p10: filter#(cons(X,Y),s(N),M) -> activate#(Y) p11: sieve#(cons(|0|(),Y)) -> activate#(Y) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p3: filter#(cons(X,Y),s(N),M) -> activate#(Y) p4: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p5: activate#(n__filter(X1,X2,X3)) -> activate#(X2) p6: activate#(n__filter(X1,X2,X3)) -> activate#(X3) p7: activate#(n__sieve(X)) -> sieve#(activate(X)) p8: sieve#(cons(|0|(),Y)) -> activate#(Y) p9: activate#(n__sieve(X)) -> activate#(X) p10: activate#(n__s(X)) -> activate#(X) p11: sieve#(cons(s(N),Y)) -> activate#(Y) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{x1 + 6, x2 + 5, x3 + 5} cons_A(x1,x2) = max{x1 + 4, x2} |0|_A = 1 activate#_A(x1) = x1 + 6 n__filter_A(x1,x2,x3) = max{x1, x2 + 4, x3 + 4} activate_A(x1) = x1 s_A(x1) = x1 n__sieve_A(x1) = max{3, x1 + 2} sieve#_A(x1) = x1 + 6 n__s_A(x1) = x1 filter_A(x1,x2,x3) = max{x1, x2 + 4, x3 + 4} sieve_A(x1) = max{3, x1 + 2} nats_A(x1) = x1 + 4 n__nats_A(x1) = x1 + 4 precedence: n__filter = sieve# = filter > cons = s = n__sieve = n__s = sieve = nats = n__nats > filter# = activate# > |0| = activate partial status: pi(filter#) = [] pi(cons) = [] pi(|0|) = [] pi(activate#) = [] pi(n__filter) = [] pi(activate) = [1] pi(s) = [] pi(n__sieve) = [] pi(sieve#) = [1] pi(n__s) = [] pi(filter) = [] pi(sieve) = [] pi(nats) = [] pi(n__nats) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p3: filter#(cons(X,Y),s(N),M) -> activate#(Y) p4: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p5: activate#(n__filter(X1,X2,X3)) -> activate#(X2) p6: activate#(n__filter(X1,X2,X3)) -> activate#(X3) p7: activate#(n__sieve(X)) -> sieve#(activate(X)) p8: sieve#(cons(|0|(),Y)) -> activate#(Y) p9: activate#(n__sieve(X)) -> activate#(X) p10: activate#(n__s(X)) -> activate#(X) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__sieve(X)) -> activate#(X) p4: activate#(n__sieve(X)) -> sieve#(activate(X)) p5: sieve#(cons(|0|(),Y)) -> activate#(Y) p6: activate#(n__filter(X1,X2,X3)) -> activate#(X3) p7: activate#(n__filter(X1,X2,X3)) -> activate#(X2) p8: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p9: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p10: filter#(cons(X,Y),s(N),M) -> activate#(Y) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{x1 + 2, x2 - 1, x3 + 9} cons_A(x1,x2) = max{x1 + 9, x2} |0|_A = 0 activate#_A(x1) = max{7, x1 + 2} n__s_A(x1) = x1 n__sieve_A(x1) = x1 + 11 sieve#_A(x1) = max{6, x1 + 2} activate_A(x1) = x1 n__filter_A(x1,x2,x3) = max{x1, x2, x3 + 8} s_A(x1) = x1 filter_A(x1,x2,x3) = max{x1, x2, x3 + 8} sieve_A(x1) = x1 + 11 nats_A(x1) = max{11, x1 + 10} n__nats_A(x1) = max{11, x1 + 10} precedence: |0| = sieve# > filter# = activate# = n__sieve = sieve > nats = n__nats > activate = filter > cons > n__s = n__filter = s partial status: pi(filter#) = [] pi(cons) = [] pi(|0|) = [] pi(activate#) = [] pi(n__s) = [1] pi(n__sieve) = [] pi(sieve#) = [] pi(activate) = [1] pi(n__filter) = [3] pi(s) = [1] pi(filter) = [] pi(sieve) = [] pi(nats) = [] pi(n__nats) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__sieve(X)) -> activate#(X) p4: sieve#(cons(|0|(),Y)) -> activate#(Y) p5: activate#(n__filter(X1,X2,X3)) -> activate#(X3) p6: activate#(n__filter(X1,X2,X3)) -> activate#(X2) p7: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p8: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p9: filter#(cons(X,Y),s(N),M) -> activate#(Y) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p3: filter#(cons(X,Y),s(N),M) -> activate#(Y) p4: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p5: activate#(n__filter(X1,X2,X3)) -> activate#(X2) p6: activate#(n__filter(X1,X2,X3)) -> activate#(X3) p7: activate#(n__sieve(X)) -> activate#(X) p8: activate#(n__s(X)) -> activate#(X) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{x1 - 2, x2 + 2, x3 - 3} cons_A(x1,x2) = max{x1 + 6, x2} |0|_A = 2 activate#_A(x1) = max{4, x1 - 2} n__filter_A(x1,x2,x3) = max{15, x1, x2 + 5, x3 + 6} activate_A(x1) = x1 s_A(x1) = max{10, x1} n__sieve_A(x1) = x1 + 3 n__s_A(x1) = max{10, x1} filter_A(x1,x2,x3) = max{15, x1, x2 + 5, x3 + 6} sieve_A(x1) = x1 + 3 nats_A(x1) = max{21, x1 + 11} n__nats_A(x1) = max{21, x1 + 11} precedence: cons = n__filter = n__sieve = filter = sieve = nats = n__nats > activate > s > filter# = activate# = n__s > |0| partial status: pi(filter#) = [] pi(cons) = [] pi(|0|) = [] pi(activate#) = [] pi(n__filter) = [] pi(activate) = [1] pi(s) = [1] pi(n__sieve) = [] pi(n__s) = [1] pi(filter) = [] pi(sieve) = [] pi(nats) = [] pi(n__nats) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p3: filter#(cons(X,Y),s(N),M) -> activate#(Y) p4: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p5: activate#(n__filter(X1,X2,X3)) -> activate#(X3) p6: activate#(n__sieve(X)) -> activate#(X) p7: activate#(n__s(X)) -> activate#(X) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__sieve(X)) -> activate#(X) p4: activate#(n__filter(X1,X2,X3)) -> activate#(X3) p5: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p6: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p7: filter#(cons(X,Y),s(N),M) -> activate#(Y) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{x1, x2 + 1, x3 - 1} cons_A(x1,x2) = max{x1 + 6, x2} |0|_A = 4 activate#_A(x1) = max{5, x1} n__s_A(x1) = x1 n__sieve_A(x1) = x1 + 12 n__filter_A(x1,x2,x3) = max{x1, x2 + 6, x3 + 6} activate_A(x1) = x1 s_A(x1) = x1 filter_A(x1,x2,x3) = max{x1, x2 + 6, x3 + 6} sieve_A(x1) = x1 + 12 nats_A(x1) = x1 + 7 n__nats_A(x1) = x1 + 7 precedence: |0| = n__filter = filter > cons = n__sieve = sieve = nats = n__nats > filter# = activate# > activate > s > n__s partial status: pi(filter#) = [] pi(cons) = [] pi(|0|) = [] pi(activate#) = [] pi(n__s) = [1] pi(n__sieve) = [] pi(n__filter) = [] pi(activate) = [1] pi(s) = [1] pi(filter) = [] pi(sieve) = [] pi(nats) = [] pi(n__nats) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__sieve(X)) -> activate#(X) p4: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p5: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p6: filter#(cons(X,Y),s(N),M) -> activate#(Y) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p3: filter#(cons(X,Y),s(N),M) -> activate#(Y) p4: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p5: activate#(n__sieve(X)) -> activate#(X) p6: activate#(n__s(X)) -> activate#(X) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{x1 + 15, x2 + 14, x3 + 14} cons_A(x1,x2) = max{11, x1 + 4, x2} |0|_A = 2 activate#_A(x1) = x1 + 15 n__filter_A(x1,x2,x3) = max{x1, x2 + 2, x3 + 3} activate_A(x1) = x1 s_A(x1) = x1 n__sieve_A(x1) = max{12, x1 + 7} n__s_A(x1) = x1 filter_A(x1,x2,x3) = max{x1, x2 + 2, x3 + 3} sieve_A(x1) = max{12, x1 + 7} nats_A(x1) = x1 + 11 n__nats_A(x1) = x1 + 11 precedence: |0| = activate > sieve > nats = n__nats > filter# = cons = activate# = n__filter = s = n__sieve = n__s = filter partial status: pi(filter#) = [] pi(cons) = [] pi(|0|) = [] pi(activate#) = [] pi(n__filter) = [1, 3] pi(activate) = [1] pi(s) = [] pi(n__sieve) = [1] pi(n__s) = [] pi(filter) = [1, 3] pi(sieve) = [1] pi(nats) = [1] pi(n__nats) = [1] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p3: filter#(cons(X,Y),s(N),M) -> activate#(Y) p4: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p5: activate#(n__s(X)) -> activate#(X) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p4: activate#(n__filter(X1,X2,X3)) -> filter#(activate(X1),activate(X2),activate(X3)) p5: filter#(cons(X,Y),s(N),M) -> activate#(Y) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{x1, x2, x3 + 2} cons_A(x1,x2) = max{2, x2} |0|_A = 1 activate#_A(x1) = max{2, x1} n__s_A(x1) = max{2, x1} n__filter_A(x1,x2,x3) = max{17, x1 + 7, x2 + 12, x3 + 12} activate_A(x1) = max{4, x1} s_A(x1) = max{2, x1} filter_A(x1,x2,x3) = max{17, x1 + 7, x2 + 12, x3 + 12} sieve_A(x1) = 4 n__sieve_A(x1) = 3 nats_A(x1) = max{4, x1 - 3} n__nats_A(x1) = max{0, x1 - 3} precedence: activate = nats > |0| = s = filter > n__s = n__filter = sieve > cons > filter# = activate# = n__sieve > n__nats partial status: pi(filter#) = [1, 2, 3] pi(cons) = [2] pi(|0|) = [] pi(activate#) = [1] pi(n__s) = [1] pi(n__filter) = [] pi(activate) = [1] pi(s) = [1] pi(filter) = [] pi(sieve) = [] pi(n__sieve) = [] pi(nats) = [] pi(n__nats) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(cons(X,Y),|0|(),M) -> activate#(Y) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__filter(X1,X2,X3)) -> activate#(X1) p4: filter#(cons(X,Y),s(N),M) -> activate#(Y) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__filter(X1,X2,X3)) -> activate#(X1) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: activate#_A(x1) = max{0, x1 - 2} n__s_A(x1) = x1 n__filter_A(x1,x2,x3) = max{x1 + 1, x2 + 3, x3 + 3} precedence: n__filter > activate# = n__s partial status: pi(activate#) = [] pi(n__s) = [1] pi(n__filter) = [1, 3] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) and R consists of: r1: filter(cons(X,Y),|0|(),M) -> cons(|0|(),n__filter(activate(Y),M,M)) r2: filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) r3: sieve(cons(|0|(),Y)) -> cons(|0|(),n__sieve(activate(Y))) r4: sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) r5: nats(N) -> cons(N,n__nats(n__s(N))) r6: zprimes() -> sieve(nats(s(s(|0|())))) r7: filter(X1,X2,X3) -> n__filter(X1,X2,X3) r8: sieve(X) -> n__sieve(X) r9: nats(X) -> n__nats(X) r10: s(X) -> n__s(X) r11: activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) r12: activate(n__sieve(X)) -> sieve(activate(X)) r13: activate(n__nats(X)) -> nats(activate(X)) r14: activate(n__s(X)) -> s(activate(X)) r15: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: activate#_A(x1) = x1 + 2 n__s_A(x1) = x1 + 2 precedence: activate# = n__s partial status: pi(activate#) = [1] pi(n__s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.