YES We show the termination of the TRS R: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) active(nats(N)) -> mark(cons(N,nats(s(N)))) active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) mark(|0|()) -> active(|0|()) mark(s(X)) -> active(s(mark(X))) mark(sieve(X)) -> active(sieve(mark(X))) mark(nats(X)) -> active(nats(mark(X))) mark(zprimes()) -> active(zprimes()) filter(mark(X1),X2,X3) -> filter(X1,X2,X3) filter(X1,mark(X2),X3) -> filter(X1,X2,X3) filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) filter(active(X1),X2,X3) -> filter(X1,X2,X3) filter(X1,active(X2),X3) -> filter(X1,X2,X3) filter(X1,X2,active(X3)) -> filter(X1,X2,X3) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) sieve(mark(X)) -> sieve(X) sieve(active(X)) -> sieve(X) nats(mark(X)) -> nats(X) nats(active(X)) -> nats(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: active#(filter(cons(X,Y),|0|(),M)) -> cons#(|0|(),filter(Y,M,M)) p3: active#(filter(cons(X,Y),|0|(),M)) -> filter#(Y,M,M) p4: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p5: active#(filter(cons(X,Y),s(N),M)) -> cons#(X,filter(Y,N,M)) p6: active#(filter(cons(X,Y),s(N),M)) -> filter#(Y,N,M) p7: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p8: active#(sieve(cons(|0|(),Y))) -> cons#(|0|(),sieve(Y)) p9: active#(sieve(cons(|0|(),Y))) -> sieve#(Y) p10: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p11: active#(sieve(cons(s(N),Y))) -> cons#(s(N),sieve(filter(Y,N,N))) p12: active#(sieve(cons(s(N),Y))) -> sieve#(filter(Y,N,N)) p13: active#(sieve(cons(s(N),Y))) -> filter#(Y,N,N) p14: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) p15: active#(nats(N)) -> cons#(N,nats(s(N))) p16: active#(nats(N)) -> nats#(s(N)) p17: active#(nats(N)) -> s#(N) p18: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p19: active#(zprimes()) -> sieve#(nats(s(s(|0|())))) p20: active#(zprimes()) -> nats#(s(s(|0|()))) p21: active#(zprimes()) -> s#(s(|0|())) p22: active#(zprimes()) -> s#(|0|()) p23: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p24: mark#(filter(X1,X2,X3)) -> filter#(mark(X1),mark(X2),mark(X3)) p25: mark#(filter(X1,X2,X3)) -> mark#(X1) p26: mark#(filter(X1,X2,X3)) -> mark#(X2) p27: mark#(filter(X1,X2,X3)) -> mark#(X3) p28: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p29: mark#(cons(X1,X2)) -> cons#(mark(X1),X2) p30: mark#(cons(X1,X2)) -> mark#(X1) p31: mark#(|0|()) -> active#(|0|()) p32: mark#(s(X)) -> active#(s(mark(X))) p33: mark#(s(X)) -> s#(mark(X)) p34: mark#(s(X)) -> mark#(X) p35: mark#(sieve(X)) -> active#(sieve(mark(X))) p36: mark#(sieve(X)) -> sieve#(mark(X)) p37: mark#(sieve(X)) -> mark#(X) p38: mark#(nats(X)) -> active#(nats(mark(X))) p39: mark#(nats(X)) -> nats#(mark(X)) p40: mark#(nats(X)) -> mark#(X) p41: mark#(zprimes()) -> active#(zprimes()) p42: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p43: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) p44: filter#(X1,X2,mark(X3)) -> filter#(X1,X2,X3) p45: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p46: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) p47: filter#(X1,X2,active(X3)) -> filter#(X1,X2,X3) p48: cons#(mark(X1),X2) -> cons#(X1,X2) p49: cons#(X1,mark(X2)) -> cons#(X1,X2) p50: cons#(active(X1),X2) -> cons#(X1,X2) p51: cons#(X1,active(X2)) -> cons#(X1,X2) p52: s#(mark(X)) -> s#(X) p53: s#(active(X)) -> s#(X) p54: sieve#(mark(X)) -> sieve#(X) p55: sieve#(active(X)) -> sieve#(X) p56: nats#(mark(X)) -> nats#(X) p57: nats#(active(X)) -> nats#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p4, p7, p10, p14, p18, p23, p25, p26, p27, p28, p30, p32, p34, p35, p37, p38, p40, p41} {p48, p49, p50, p51} {p42, p43, p44, p45, p46, p47} {p54, p55} {p56, p57} {p52, p53} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(zprimes()) -> active#(zprimes()) p3: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p4: mark#(sieve(X)) -> mark#(X) p5: mark#(nats(X)) -> mark#(X) p6: mark#(nats(X)) -> active#(nats(mark(X))) p7: active#(nats(N)) -> mark#(cons(N,nats(s(N)))) p8: mark#(sieve(X)) -> active#(sieve(mark(X))) p9: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p10: mark#(s(X)) -> mark#(X) p11: mark#(s(X)) -> active#(s(mark(X))) p12: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p13: mark#(cons(X1,X2)) -> mark#(X1) p14: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p15: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p16: mark#(filter(X1,X2,X3)) -> mark#(X3) p17: mark#(filter(X1,X2,X3)) -> mark#(X2) p18: mark#(filter(X1,X2,X3)) -> mark#(X1) p19: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{1, x1 - 7} filter_A(x1,x2,x3) = max{x1, x2 + 56, x3 + 69} cons_A(x1,x2) = max{64, x1 + 52, x2 - 40} |0|_A = 11 mark#_A(x1) = max{0, x1 - 7} zprimes_A = 209 sieve_A(x1) = max{209, x1 + 114} nats_A(x1) = x1 + 66 s_A(x1) = max{14, x1 + 9} mark_A(x1) = x1 active_A(x1) = max{10, x1} precedence: active# = filter = cons = |0| = mark# = zprimes = sieve = nats = s = mark = active partial status: pi(active#) = [] pi(filter) = [] pi(cons) = [] pi(|0|) = [] pi(mark#) = [] pi(zprimes) = [] pi(sieve) = [] pi(nats) = [] pi(s) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(zprimes()) -> active#(zprimes()) p3: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p4: mark#(sieve(X)) -> mark#(X) p5: mark#(nats(X)) -> mark#(X) p6: mark#(nats(X)) -> active#(nats(mark(X))) p7: mark#(sieve(X)) -> active#(sieve(mark(X))) p8: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p9: mark#(s(X)) -> mark#(X) p10: mark#(s(X)) -> active#(s(mark(X))) p11: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p12: mark#(cons(X1,X2)) -> mark#(X1) p13: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p14: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p15: mark#(filter(X1,X2,X3)) -> mark#(X3) p16: mark#(filter(X1,X2,X3)) -> mark#(X2) p17: mark#(filter(X1,X2,X3)) -> mark#(X1) p18: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p3: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p4: mark#(filter(X1,X2,X3)) -> mark#(X1) p5: mark#(filter(X1,X2,X3)) -> mark#(X2) p6: mark#(filter(X1,X2,X3)) -> mark#(X3) p7: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p8: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(s(X)) -> active#(s(mark(X))) p11: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p12: mark#(s(X)) -> mark#(X) p13: mark#(sieve(X)) -> active#(sieve(mark(X))) p14: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p15: mark#(sieve(X)) -> mark#(X) p16: mark#(nats(X)) -> active#(nats(mark(X))) p17: mark#(nats(X)) -> mark#(X) p18: mark#(zprimes()) -> active#(zprimes()) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{21, x1} filter_A(x1,x2,x3) = max{x1 + 28, x2 + 39, x3 + 92} cons_A(x1,x2) = x1 + 30 |0|_A = 58 mark#_A(x1) = max{14, x1 + 3} mark_A(x1) = x1 s_A(x1) = max{123, x1 + 65} sieve_A(x1) = x1 + 57 zprimes_A = 279 nats_A(x1) = x1 + 31 active_A(x1) = max{29, x1} precedence: filter = s = sieve = zprimes > |0| = mark = nats = active > active# = cons > mark# partial status: pi(active#) = [] pi(filter) = [] pi(cons) = [] pi(|0|) = [] pi(mark#) = [1] pi(mark) = [] pi(s) = [] pi(sieve) = [] pi(zprimes) = [] pi(nats) = [] pi(active) = [] The next rules are strictly ordered: p18 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p3: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p4: mark#(filter(X1,X2,X3)) -> mark#(X1) p5: mark#(filter(X1,X2,X3)) -> mark#(X2) p6: mark#(filter(X1,X2,X3)) -> mark#(X3) p7: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p8: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(s(X)) -> active#(s(mark(X))) p11: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p12: mark#(s(X)) -> mark#(X) p13: mark#(sieve(X)) -> active#(sieve(mark(X))) p14: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p15: mark#(sieve(X)) -> mark#(X) p16: mark#(nats(X)) -> active#(nats(mark(X))) p17: mark#(nats(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(nats(X)) -> mark#(X) p3: mark#(nats(X)) -> active#(nats(mark(X))) p4: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p5: mark#(sieve(X)) -> mark#(X) p6: mark#(sieve(X)) -> active#(sieve(mark(X))) p7: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p8: mark#(s(X)) -> mark#(X) p9: mark#(s(X)) -> active#(s(mark(X))) p10: active#(sieve(cons(|0|(),Y))) -> mark#(cons(|0|(),sieve(Y))) p11: mark#(cons(X1,X2)) -> mark#(X1) p12: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p13: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p14: mark#(filter(X1,X2,X3)) -> mark#(X3) p15: mark#(filter(X1,X2,X3)) -> mark#(X2) p16: mark#(filter(X1,X2,X3)) -> mark#(X1) p17: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{5, x1 - 4} filter_A(x1,x2,x3) = max{x1 + 62, x2 + 62, x3 + 12} cons_A(x1,x2) = max{27, x1 + 26} |0|_A = 7 mark#_A(x1) = max{4, x1 - 4} nats_A(x1) = x1 + 48 mark_A(x1) = x1 zprimes_A = 112 sieve_A(x1) = max{60, x1 + 38} s_A(x1) = x1 + 9 active_A(x1) = max{1, x1} precedence: active# = filter = cons = |0| = mark# = nats = mark = zprimes = sieve = s = active partial status: pi(active#) = [] pi(filter) = [] pi(cons) = [] pi(|0|) = [] pi(mark#) = [] pi(nats) = [] pi(mark) = [1] pi(zprimes) = [] pi(sieve) = [] pi(s) = [] pi(active) = [1] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(nats(X)) -> mark#(X) p3: mark#(nats(X)) -> active#(nats(mark(X))) p4: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p5: mark#(sieve(X)) -> mark#(X) p6: mark#(sieve(X)) -> active#(sieve(mark(X))) p7: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p8: mark#(s(X)) -> mark#(X) p9: mark#(s(X)) -> active#(s(mark(X))) p10: mark#(cons(X1,X2)) -> mark#(X1) p11: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p12: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p13: mark#(filter(X1,X2,X3)) -> mark#(X3) p14: mark#(filter(X1,X2,X3)) -> mark#(X2) p15: mark#(filter(X1,X2,X3)) -> mark#(X1) p16: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p3: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p4: mark#(filter(X1,X2,X3)) -> mark#(X1) p5: mark#(filter(X1,X2,X3)) -> mark#(X2) p6: mark#(filter(X1,X2,X3)) -> mark#(X3) p7: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p8: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(s(X)) -> active#(s(mark(X))) p11: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p12: mark#(sieve(X)) -> active#(sieve(mark(X))) p13: mark#(sieve(X)) -> mark#(X) p14: mark#(s(X)) -> mark#(X) p15: mark#(nats(X)) -> active#(nats(mark(X))) p16: mark#(nats(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{82, x1 - 14} filter_A(x1,x2,x3) = 217 cons_A(x1,x2) = 174 |0|_A = 118 mark#_A(x1) = 203 mark_A(x1) = max{204, x1 - 407} s_A(x1) = 102 sieve_A(x1) = 217 zprimes_A = 217 nats_A(x1) = 217 active_A(x1) = max{101, x1 - 13} precedence: nats > filter = |0| = mark = sieve = active > active# = cons = mark# = s = zprimes partial status: pi(active#) = [] pi(filter) = [] pi(cons) = [] pi(|0|) = [] pi(mark#) = [] pi(mark) = [] pi(s) = [] pi(sieve) = [] pi(zprimes) = [] pi(nats) = [] pi(active) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p3: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p4: mark#(filter(X1,X2,X3)) -> mark#(X1) p5: mark#(filter(X1,X2,X3)) -> mark#(X2) p6: mark#(filter(X1,X2,X3)) -> mark#(X3) p7: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p8: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p11: mark#(sieve(X)) -> active#(sieve(mark(X))) p12: mark#(sieve(X)) -> mark#(X) p13: mark#(s(X)) -> mark#(X) p14: mark#(nats(X)) -> active#(nats(mark(X))) p15: mark#(nats(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(nats(X)) -> mark#(X) p3: mark#(nats(X)) -> active#(nats(mark(X))) p4: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p5: mark#(sieve(X)) -> mark#(X) p6: mark#(s(X)) -> mark#(X) p7: mark#(sieve(X)) -> active#(sieve(mark(X))) p8: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p11: active#(filter(cons(X,Y),s(N),M)) -> mark#(cons(X,filter(Y,N,M))) p12: mark#(filter(X1,X2,X3)) -> mark#(X3) p13: mark#(filter(X1,X2,X3)) -> mark#(X2) p14: mark#(filter(X1,X2,X3)) -> mark#(X1) p15: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{1, x1 - 3} filter_A(x1,x2,x3) = max{x1 + 71, x2 + 9, x3 + 12} cons_A(x1,x2) = max{115, x1 + 25} |0|_A = 8 mark#_A(x1) = max{3, x1} nats_A(x1) = x1 + 158 mark_A(x1) = x1 + 3 zprimes_A = 246 sieve_A(x1) = x1 + 8 s_A(x1) = x1 + 34 active_A(x1) = max{11, x1} precedence: mark > active > active# = filter = cons = |0| = mark# = nats = zprimes = sieve = s partial status: pi(active#) = [] pi(filter) = [1] pi(cons) = [] pi(|0|) = [] pi(mark#) = [1] pi(nats) = [1] pi(mark) = [] pi(zprimes) = [] pi(sieve) = [1] pi(s) = [] pi(active) = [1] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(nats(X)) -> mark#(X) p3: mark#(nats(X)) -> active#(nats(mark(X))) p4: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p5: mark#(sieve(X)) -> mark#(X) p6: mark#(s(X)) -> mark#(X) p7: mark#(sieve(X)) -> active#(sieve(mark(X))) p8: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p11: mark#(filter(X1,X2,X3)) -> mark#(X3) p12: mark#(filter(X1,X2,X3)) -> mark#(X2) p13: mark#(filter(X1,X2,X3)) -> mark#(X1) p14: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p3: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p4: mark#(filter(X1,X2,X3)) -> mark#(X1) p5: mark#(filter(X1,X2,X3)) -> mark#(X2) p6: mark#(filter(X1,X2,X3)) -> mark#(X3) p7: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p8: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p9: mark#(sieve(X)) -> active#(sieve(mark(X))) p10: mark#(sieve(X)) -> mark#(X) p11: mark#(cons(X1,X2)) -> mark#(X1) p12: mark#(s(X)) -> mark#(X) p13: mark#(nats(X)) -> active#(nats(mark(X))) p14: mark#(nats(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{1, x1 - 5} filter_A(x1,x2,x3) = max{x1 + 19, x2, x3 + 19} cons_A(x1,x2) = max{12, x1} |0|_A = 13 mark#_A(x1) = max{0, x1 - 5} mark_A(x1) = x1 sieve_A(x1) = max{15, x1} s_A(x1) = x1 + 15 zprimes_A = 43 nats_A(x1) = max{12, x1} active_A(x1) = max{12, x1} precedence: active# = filter = cons = |0| = mark# = mark = sieve = s = zprimes = nats = active partial status: pi(active#) = [] pi(filter) = [] pi(cons) = [] pi(|0|) = [] pi(mark#) = [] pi(mark) = [] pi(sieve) = [] pi(s) = [] pi(zprimes) = [] pi(nats) = [] pi(active) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p3: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p4: mark#(filter(X1,X2,X3)) -> mark#(X1) p5: mark#(filter(X1,X2,X3)) -> mark#(X2) p6: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p7: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p8: mark#(sieve(X)) -> active#(sieve(mark(X))) p9: mark#(sieve(X)) -> mark#(X) p10: mark#(cons(X1,X2)) -> mark#(X1) p11: mark#(s(X)) -> mark#(X) p12: mark#(nats(X)) -> active#(nats(mark(X))) p13: mark#(nats(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(nats(X)) -> mark#(X) p3: mark#(nats(X)) -> active#(nats(mark(X))) p4: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p5: mark#(sieve(X)) -> mark#(X) p6: mark#(s(X)) -> mark#(X) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(sieve(X)) -> active#(sieve(mark(X))) p9: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p10: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p11: mark#(filter(X1,X2,X3)) -> mark#(X2) p12: mark#(filter(X1,X2,X3)) -> mark#(X1) p13: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{225, x1 + 114} filter_A(x1,x2,x3) = 223 cons_A(x1,x2) = 132 |0|_A = 426 mark#_A(x1) = 337 nats_A(x1) = 223 mark_A(x1) = x1 + 184 zprimes_A = 442 sieve_A(x1) = 223 s_A(x1) = 236 active_A(x1) = x1 + 93 precedence: active# = filter = cons = |0| = mark# = nats = mark = zprimes = sieve = s = active partial status: pi(active#) = [] pi(filter) = [] pi(cons) = [] pi(|0|) = [] pi(mark#) = [] pi(nats) = [] pi(mark) = [] pi(zprimes) = [] pi(sieve) = [] pi(s) = [] pi(active) = [1] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(nats(X)) -> mark#(X) p3: mark#(nats(X)) -> active#(nats(mark(X))) p4: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p5: mark#(sieve(X)) -> mark#(X) p6: mark#(s(X)) -> mark#(X) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(sieve(X)) -> active#(sieve(mark(X))) p9: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p10: mark#(filter(X1,X2,X3)) -> mark#(X2) p11: mark#(filter(X1,X2,X3)) -> mark#(X1) p12: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(filter(X1,X2,X3)) -> active#(filter(mark(X1),mark(X2),mark(X3))) p3: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p4: mark#(filter(X1,X2,X3)) -> mark#(X1) p5: mark#(filter(X1,X2,X3)) -> mark#(X2) p6: mark#(sieve(X)) -> active#(sieve(mark(X))) p7: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p8: mark#(sieve(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(s(X)) -> mark#(X) p11: mark#(nats(X)) -> active#(nats(mark(X))) p12: mark#(nats(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{179, x1 - 175} filter_A(x1,x2,x3) = max{x1 + 13, x2, x3 + 353} cons_A(x1,x2) = max{27, x1 + 3} |0|_A = 56 mark#_A(x1) = max{179, x1 - 147} mark_A(x1) = x1 + 6 sieve_A(x1) = x1 + 28 s_A(x1) = x1 + 31 zprimes_A = 352 nats_A(x1) = x1 + 179 active_A(x1) = max{32, x1} precedence: mark > sieve > active# = filter = mark# = s = nats > cons = |0| = zprimes = active partial status: pi(active#) = [] pi(filter) = [3] pi(cons) = [] pi(|0|) = [] pi(mark#) = [] pi(mark) = [] pi(sieve) = [] pi(s) = [1] pi(zprimes) = [] pi(nats) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p3: mark#(filter(X1,X2,X3)) -> mark#(X1) p4: mark#(filter(X1,X2,X3)) -> mark#(X2) p5: mark#(sieve(X)) -> active#(sieve(mark(X))) p6: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p7: mark#(sieve(X)) -> mark#(X) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(s(X)) -> mark#(X) p10: mark#(nats(X)) -> active#(nats(mark(X))) p11: mark#(nats(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(nats(X)) -> mark#(X) p3: mark#(nats(X)) -> active#(nats(mark(X))) p4: active#(zprimes()) -> mark#(sieve(nats(s(s(|0|()))))) p5: mark#(sieve(X)) -> mark#(X) p6: mark#(s(X)) -> mark#(X) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(sieve(X)) -> active#(sieve(mark(X))) p9: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p10: mark#(filter(X1,X2,X3)) -> mark#(X2) p11: mark#(filter(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 8 filter_A(x1,x2,x3) = max{x1, x2, x3} cons_A(x1,x2) = max{x1, x2} |0|_A = 1 mark#_A(x1) = x1 + 8 nats_A(x1) = x1 mark_A(x1) = x1 zprimes_A = 5 sieve_A(x1) = x1 + 3 s_A(x1) = x1 active_A(x1) = x1 precedence: sieve > active# = filter = cons = |0| = mark# = zprimes > mark = s = active > nats partial status: pi(active#) = [] pi(filter) = [] pi(cons) = [] pi(|0|) = [] pi(mark#) = [] pi(nats) = [] pi(mark) = [] pi(zprimes) = [] pi(sieve) = [] pi(s) = [] pi(active) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(nats(X)) -> mark#(X) p3: mark#(nats(X)) -> active#(nats(mark(X))) p4: mark#(sieve(X)) -> mark#(X) p5: mark#(s(X)) -> mark#(X) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(sieve(X)) -> active#(sieve(mark(X))) p8: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p9: mark#(filter(X1,X2,X3)) -> mark#(X2) p10: mark#(filter(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(filter(X1,X2,X3)) -> mark#(X1) p3: mark#(filter(X1,X2,X3)) -> mark#(X2) p4: mark#(sieve(X)) -> active#(sieve(mark(X))) p5: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(s(X)) -> mark#(X) p8: mark#(sieve(X)) -> mark#(X) p9: mark#(nats(X)) -> active#(nats(mark(X))) p10: mark#(nats(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{66, x1 - 9} filter_A(x1,x2,x3) = max{x1, x2 + 147, x3 + 147} cons_A(x1,x2) = max{x1 + 78, x2 - 53} |0|_A = 68 mark#_A(x1) = max{1, x1 - 9} sieve_A(x1) = x1 + 75 mark_A(x1) = x1 s_A(x1) = max{85, x1 + 16} nats_A(x1) = max{119, x1 + 86} active_A(x1) = max{67, x1} zprimes_A = 262 precedence: zprimes > filter = sieve > mark > |0| > cons > s = active > active# = mark# = nats partial status: pi(active#) = [] pi(filter) = [] pi(cons) = [1] pi(|0|) = [] pi(mark#) = [] pi(sieve) = [] pi(mark) = [1] pi(s) = [1] pi(nats) = [1] pi(active) = [1] pi(zprimes) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(filter(X1,X2,X3)) -> mark#(X1) p3: mark#(filter(X1,X2,X3)) -> mark#(X2) p4: mark#(sieve(X)) -> active#(sieve(mark(X))) p5: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(s(X)) -> mark#(X) p8: mark#(sieve(X)) -> mark#(X) p9: mark#(nats(X)) -> active#(nats(mark(X))) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> mark#(cons(|0|(),filter(Y,M,M))) p2: mark#(nats(X)) -> active#(nats(mark(X))) p3: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p4: mark#(sieve(X)) -> mark#(X) p5: mark#(s(X)) -> mark#(X) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(sieve(X)) -> active#(sieve(mark(X))) p8: mark#(filter(X1,X2,X3)) -> mark#(X2) p9: mark#(filter(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{97, x1 + 13} filter_A(x1,x2,x3) = max{x1 + 99, x2 + 99, x3 + 99} cons_A(x1,x2) = x1 + 56 |0|_A = 16 mark#_A(x1) = x1 + 55 nats_A(x1) = max{70, x1 + 56} mark_A(x1) = x1 sieve_A(x1) = x1 + 53 s_A(x1) = x1 + 118 active_A(x1) = max{15, x1} zprimes_A = 362 precedence: active# = filter = cons = |0| = mark# = nats = mark = sieve = s = active = zprimes partial status: pi(active#) = [1] pi(filter) = [] pi(cons) = [] pi(|0|) = [] pi(mark#) = [1] pi(nats) = [] pi(mark) = [1] pi(sieve) = [] pi(s) = [] pi(active) = [1] pi(zprimes) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(nats(X)) -> active#(nats(mark(X))) p2: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p3: mark#(sieve(X)) -> mark#(X) p4: mark#(s(X)) -> mark#(X) p5: mark#(cons(X1,X2)) -> mark#(X1) p6: mark#(sieve(X)) -> active#(sieve(mark(X))) p7: mark#(filter(X1,X2,X3)) -> mark#(X2) p8: mark#(filter(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(nats(X)) -> active#(nats(mark(X))) p2: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p3: mark#(filter(X1,X2,X3)) -> mark#(X1) p4: mark#(filter(X1,X2,X3)) -> mark#(X2) p5: mark#(sieve(X)) -> active#(sieve(mark(X))) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(s(X)) -> mark#(X) p8: mark#(sieve(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 380 nats_A(x1) = 132 active#_A(x1) = x1 + 223 mark_A(x1) = max{156, x1 + 42} sieve_A(x1) = 157 cons_A(x1,x2) = 79 s_A(x1) = 180 filter_A(x1,x2,x3) = 191 active_A(x1) = max{101, x1 + 24} |0|_A = 262 zprimes_A = 175 precedence: mark# = nats = active# = mark = sieve = cons = s = filter = active = |0| = zprimes partial status: pi(mark#) = [] pi(nats) = [] pi(active#) = [] pi(mark) = [] pi(sieve) = [] pi(cons) = [] pi(s) = [] pi(filter) = [] pi(active) = [1] pi(|0|) = [] pi(zprimes) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p2: mark#(filter(X1,X2,X3)) -> mark#(X1) p3: mark#(filter(X1,X2,X3)) -> mark#(X2) p4: mark#(sieve(X)) -> active#(sieve(mark(X))) p5: mark#(cons(X1,X2)) -> mark#(X1) p6: mark#(s(X)) -> mark#(X) p7: mark#(sieve(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p2: mark#(sieve(X)) -> mark#(X) p3: mark#(s(X)) -> mark#(X) p4: mark#(cons(X1,X2)) -> mark#(X1) p5: mark#(sieve(X)) -> active#(sieve(mark(X))) p6: mark#(filter(X1,X2,X3)) -> mark#(X2) p7: mark#(filter(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{6, x1 - 9} sieve_A(x1) = max{34, x1 + 26} cons_A(x1,x2) = max{21, x1 + 5} s_A(x1) = x1 + 42 mark#_A(x1) = x1 filter_A(x1,x2,x3) = max{x1 + 18, x2 + 18} mark_A(x1) = x1 active_A(x1) = max{6, x1} |0|_A = 22 nats_A(x1) = x1 + 22 zprimes_A = 154 precedence: active# = sieve = cons = s = mark# = filter = mark = active = |0| = nats = zprimes partial status: pi(active#) = [] pi(sieve) = [] pi(cons) = [] pi(s) = [] pi(mark#) = [1] pi(filter) = [] pi(mark) = [1] pi(active) = [1] pi(|0|) = [] pi(nats) = [] pi(zprimes) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p2: mark#(sieve(X)) -> mark#(X) p3: mark#(s(X)) -> mark#(X) p4: mark#(cons(X1,X2)) -> mark#(X1) p5: mark#(sieve(X)) -> active#(sieve(mark(X))) p6: mark#(filter(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p2: mark#(filter(X1,X2,X3)) -> mark#(X1) p3: mark#(sieve(X)) -> active#(sieve(mark(X))) p4: mark#(cons(X1,X2)) -> mark#(X1) p5: mark#(s(X)) -> mark#(X) p6: mark#(sieve(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 28 sieve_A(x1) = max{125, x1 + 104} cons_A(x1,x2) = max{19, x1 + 1} s_A(x1) = x1 + 44 mark#_A(x1) = x1 + 52 filter_A(x1,x2,x3) = max{x1 + 52, x2 + 53, x3 + 74} mark_A(x1) = x1 active_A(x1) = max{2, x1} |0|_A = 20 nats_A(x1) = x1 + 42 zprimes_A = 255 precedence: sieve = cons = filter = |0| = nats > active# = s = mark# = mark = active = zprimes partial status: pi(active#) = [] pi(sieve) = [] pi(cons) = [] pi(s) = [] pi(mark#) = [1] pi(filter) = [] pi(mark) = [1] pi(active) = [1] pi(|0|) = [] pi(nats) = [] pi(zprimes) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p2: mark#(filter(X1,X2,X3)) -> mark#(X1) p3: mark#(sieve(X)) -> active#(sieve(mark(X))) p4: mark#(cons(X1,X2)) -> mark#(X1) p5: mark#(sieve(X)) -> mark#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p2: mark#(sieve(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(sieve(X)) -> active#(sieve(mark(X))) p5: mark#(filter(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{2, x1 - 30} sieve_A(x1) = x1 + 62 cons_A(x1,x2) = max{14, x1} s_A(x1) = x1 + 14 mark#_A(x1) = max{46, x1 + 29} filter_A(x1,x2,x3) = x1 + 46 mark_A(x1) = x1 + 30 active_A(x1) = max{42, x1} |0|_A = 15 nats_A(x1) = max{87, x1 + 45} zprimes_A = 181 precedence: mark > s = active = nats = zprimes > active# = sieve > filter > cons = mark# > |0| partial status: pi(active#) = [] pi(sieve) = [] pi(cons) = [1] pi(s) = [] pi(mark#) = [1] pi(filter) = [] pi(mark) = [1] pi(active) = [1] pi(|0|) = [] pi(nats) = [] pi(zprimes) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(sieve(cons(s(N),Y))) -> mark#(cons(s(N),sieve(filter(Y,N,N)))) p2: mark#(sieve(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(filter(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(sieve(X)) -> mark#(X) p2: mark#(filter(X1,X2,X3)) -> mark#(X1) p3: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{3, x1 + 2} sieve_A(x1) = x1 + 1 filter_A(x1,x2,x3) = max{x1 + 3, x2 + 2, x3 + 3} cons_A(x1,x2) = max{x1, x2 + 1} precedence: mark# = sieve = filter = cons partial status: pi(mark#) = [] pi(sieve) = [1] pi(filter) = [3] pi(cons) = [2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(sieve(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(sieve(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{4, x1 + 3} sieve_A(x1) = x1 + 2 cons_A(x1,x2) = max{x1 + 1, x2 + 1} precedence: mark# = sieve = cons partial status: pi(mark#) = [] pi(sieve) = [1] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 2 cons_A(x1,x2) = max{x1 + 1, x2 + 1} precedence: mark# = cons partial status: pi(mark#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(mark(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(mark(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(mark(X1),X2) -> cons#(X1,X2) p3: cons#(X1,active(X2)) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = x1 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,active(X2)) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,active(X2)) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{0, x2 - 2} active_A(x1) = max{3, x1 + 1} precedence: cons# = active partial status: pi(cons#) = [] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,X2,active(X3)) -> filter#(X1,X2,X3) p3: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) p4: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p5: filter#(X1,X2,mark(X3)) -> filter#(X1,X2,X3) p6: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{x1 - 1, x2 - 1, x3 + 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: filter# = mark = active partial status: pi(filter#) = [3] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) p3: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p4: filter#(X1,X2,mark(X3)) -> filter#(X1,X2,X3) p5: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) p3: filter#(X1,X2,mark(X3)) -> filter#(X1,X2,X3) p4: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p5: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{0, x2 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: filter# = mark = active partial status: pi(filter#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,X2,mark(X3)) -> filter#(X1,X2,X3) p3: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p4: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) p3: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p4: filter#(X1,X2,mark(X3)) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{x1 - 1, x2 - 1, x3 + 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: filter# = mark = active partial status: pi(filter#) = [3] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) p3: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) p3: filter#(X1,active(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{x1 - 1, x2 + 1, x3 + 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: filter# = mark = active partial status: pi(filter#) = [2] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{x1, x3 + 1} mark_A(x1) = x1 + 2 active_A(x1) = x1 + 1 precedence: filter# = mark = active partial status: pi(filter#) = [1] pi(mark) = [] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(active(X1),X2,X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: filter#_A(x1,x2,x3) = max{x1 + 1, x2 + 1, x3 + 1} active_A(x1) = x1 precedence: filter# = active partial status: pi(filter#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sieve#(mark(X)) -> sieve#(X) p2: sieve#(active(X)) -> sieve#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: sieve#_A(x1) = max{3, x1 + 2} mark_A(x1) = x1 active_A(x1) = x1 + 1 precedence: sieve# = mark = active partial status: pi(sieve#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: sieve#(active(X)) -> sieve#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sieve#(active(X)) -> sieve#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: sieve#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: sieve# = active partial status: pi(sieve#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: nats#(mark(X)) -> nats#(X) p2: nats#(active(X)) -> nats#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: nats#_A(x1) = max{3, x1 + 2} mark_A(x1) = x1 active_A(x1) = x1 + 1 precedence: nats# = mark = active partial status: pi(nats#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: nats#(active(X)) -> nats#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: nats#(active(X)) -> nats#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: nats#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: nats# = active partial status: pi(nats#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = max{3, x1 + 2} mark_A(x1) = x1 active_A(x1) = x1 + 1 precedence: s# = mark = active partial status: pi(s#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: mark(filter(X1,X2,X3)) -> active(filter(mark(X1),mark(X2),mark(X3))) r8: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r9: mark(|0|()) -> active(|0|()) r10: mark(s(X)) -> active(s(mark(X))) r11: mark(sieve(X)) -> active(sieve(mark(X))) r12: mark(nats(X)) -> active(nats(mark(X))) r13: mark(zprimes()) -> active(zprimes()) r14: filter(mark(X1),X2,X3) -> filter(X1,X2,X3) r15: filter(X1,mark(X2),X3) -> filter(X1,X2,X3) r16: filter(X1,X2,mark(X3)) -> filter(X1,X2,X3) r17: filter(active(X1),X2,X3) -> filter(X1,X2,X3) r18: filter(X1,active(X2),X3) -> filter(X1,X2,X3) r19: filter(X1,X2,active(X3)) -> filter(X1,X2,X3) r20: cons(mark(X1),X2) -> cons(X1,X2) r21: cons(X1,mark(X2)) -> cons(X1,X2) r22: cons(active(X1),X2) -> cons(X1,X2) r23: cons(X1,active(X2)) -> cons(X1,X2) r24: s(mark(X)) -> s(X) r25: s(active(X)) -> s(X) r26: sieve(mark(X)) -> sieve(X) r27: sieve(active(X)) -> sieve(X) r28: nats(mark(X)) -> nats(X) r29: nats(active(X)) -> nats(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: s# = active partial status: pi(s#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.