YES We show the termination of the TRS R: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) active(f(s(|0|()))) -> mark(f(p(s(|0|())))) active(p(s(X))) -> mark(X) mark(f(X)) -> active(f(mark(X))) mark(|0|()) -> active(|0|()) mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) mark(s(X)) -> active(s(mark(X))) mark(p(X)) -> active(p(mark(X))) f(mark(X)) -> f(X) f(active(X)) -> f(X) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) p(mark(X)) -> p(X) p(active(X)) -> p(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(|0|())) -> mark#(cons(|0|(),f(s(|0|())))) p2: active#(f(|0|())) -> cons#(|0|(),f(s(|0|()))) p3: active#(f(|0|())) -> f#(s(|0|())) p4: active#(f(|0|())) -> s#(|0|()) p5: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p6: active#(f(s(|0|()))) -> f#(p(s(|0|()))) p7: active#(f(s(|0|()))) -> p#(s(|0|())) p8: active#(p(s(X))) -> mark#(X) p9: mark#(f(X)) -> active#(f(mark(X))) p10: mark#(f(X)) -> f#(mark(X)) p11: mark#(f(X)) -> mark#(X) p12: mark#(|0|()) -> active#(|0|()) p13: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p14: mark#(cons(X1,X2)) -> cons#(mark(X1),X2) p15: mark#(cons(X1,X2)) -> mark#(X1) p16: mark#(s(X)) -> active#(s(mark(X))) p17: mark#(s(X)) -> s#(mark(X)) p18: mark#(s(X)) -> mark#(X) p19: mark#(p(X)) -> active#(p(mark(X))) p20: mark#(p(X)) -> p#(mark(X)) p21: mark#(p(X)) -> mark#(X) p22: f#(mark(X)) -> f#(X) p23: f#(active(X)) -> f#(X) p24: cons#(mark(X1),X2) -> cons#(X1,X2) p25: cons#(X1,mark(X2)) -> cons#(X1,X2) p26: cons#(active(X1),X2) -> cons#(X1,X2) p27: cons#(X1,active(X2)) -> cons#(X1,X2) p28: s#(mark(X)) -> s#(X) p29: s#(active(X)) -> s#(X) p30: p#(mark(X)) -> p#(X) p31: p#(active(X)) -> p#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p5, p8, p9, p11, p13, p15, p16, p18, p19, p21} {p22, p23} {p24, p25, p26, p27} {p28, p29} {p30, p31} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(|0|())) -> mark#(cons(|0|(),f(s(|0|())))) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(p(X)) -> mark#(X) p4: mark#(p(X)) -> active#(p(mark(X))) p5: active#(p(s(X))) -> mark#(X) p6: mark#(s(X)) -> mark#(X) p7: mark#(s(X)) -> active#(s(mark(X))) p8: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p9: mark#(f(X)) -> mark#(X) p10: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p11: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{42, x1 + 4} f_A(x1) = x1 + 10 |0|_A = 17 mark#_A(x1) = max{42, x1 + 5} cons_A(x1,x2) = x1 + 8 s_A(x1) = max{25, x1 + 10} p_A(x1) = max{9, x1} mark_A(x1) = x1 active_A(x1) = max{8, x1} precedence: f = cons = p = mark = active > s > active# = |0| = mark# partial status: pi(active#) = [1] pi(f) = [] pi(|0|) = [] pi(mark#) = [1] pi(cons) = [] pi(s) = [] pi(p) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(p(X)) -> mark#(X) p3: mark#(p(X)) -> active#(p(mark(X))) p4: active#(p(s(X))) -> mark#(X) p5: mark#(s(X)) -> mark#(X) p6: mark#(s(X)) -> active#(s(mark(X))) p7: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p8: mark#(f(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(f(X)) -> active#(f(mark(X))) p3: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p4: mark#(f(X)) -> mark#(X) p5: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p6: active#(p(s(X))) -> mark#(X) p7: mark#(s(X)) -> active#(s(mark(X))) p8: mark#(s(X)) -> mark#(X) p9: mark#(p(X)) -> active#(p(mark(X))) p10: mark#(p(X)) -> mark#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 14 cons_A(x1,x2) = max{x1 + 21, x2 - 5} f_A(x1) = x1 + 22 active#_A(x1) = x1 + 14 mark_A(x1) = x1 s_A(x1) = max{10, x1 + 5} |0|_A = 6 p_A(x1) = max{7, x1} active_A(x1) = max{6, x1} precedence: cons = f = |0| > mark# = active# = mark = s = p = active partial status: pi(mark#) = [] pi(cons) = [] pi(f) = [] pi(active#) = [] pi(mark) = [] pi(s) = [] pi(|0|) = [] pi(p) = [] pi(active) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(f(X)) -> active#(f(mark(X))) p3: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p4: mark#(f(X)) -> mark#(X) p5: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p6: mark#(s(X)) -> active#(s(mark(X))) p7: mark#(s(X)) -> mark#(X) p8: mark#(p(X)) -> active#(p(mark(X))) p9: mark#(p(X)) -> mark#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(p(X)) -> mark#(X) p3: mark#(p(X)) -> active#(p(mark(X))) p4: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p5: mark#(f(X)) -> mark#(X) p6: mark#(s(X)) -> mark#(X) p7: mark#(s(X)) -> active#(s(mark(X))) p8: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p9: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{10, x1 - 3} cons_A(x1,x2) = max{10, x1} p_A(x1) = max{25, x1} active#_A(x1) = max{0, x1 - 3} mark_A(x1) = max{6, x1} f_A(x1) = max{4, x1} s_A(x1) = max{24, x1 + 14} |0|_A = 11 active_A(x1) = max{5, x1} precedence: s = |0| > p > cons = mark > f > mark# = active# = active partial status: pi(mark#) = [] pi(cons) = [] pi(p) = [] pi(active#) = [] pi(mark) = [1] pi(f) = [1] pi(s) = [] pi(|0|) = [] pi(active) = [1] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(p(X)) -> mark#(X) p3: mark#(p(X)) -> active#(p(mark(X))) p4: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p5: mark#(f(X)) -> mark#(X) p6: mark#(s(X)) -> active#(s(mark(X))) p7: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p8: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(f(X)) -> active#(f(mark(X))) p3: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p4: mark#(f(X)) -> mark#(X) p5: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p6: mark#(s(X)) -> active#(s(mark(X))) p7: mark#(p(X)) -> active#(p(mark(X))) p8: mark#(p(X)) -> mark#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 291 cons_A(x1,x2) = 125 f_A(x1) = 126 active#_A(x1) = max{248, x1 + 165} mark_A(x1) = 172 s_A(x1) = 119 |0|_A = 87 p_A(x1) = 125 active_A(x1) = max{172, x1 - 12} precedence: mark = |0| = active > mark# = active# = s = p > f > cons partial status: pi(mark#) = [] pi(cons) = [] pi(f) = [] pi(active#) = [] pi(mark) = [] pi(s) = [] pi(|0|) = [] pi(p) = [] pi(active) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(f(X)) -> active#(f(mark(X))) p3: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p4: mark#(f(X)) -> mark#(X) p5: mark#(s(X)) -> active#(s(mark(X))) p6: mark#(p(X)) -> active#(p(mark(X))) p7: mark#(p(X)) -> mark#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(cons(X1,X2)) -> mark#(X1) p2: mark#(p(X)) -> mark#(X) p3: mark#(p(X)) -> active#(p(mark(X))) p4: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p5: mark#(f(X)) -> mark#(X) p6: mark#(s(X)) -> active#(s(mark(X))) p7: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 cons_A(x1,x2) = max{37, x1 + 19} p_A(x1) = max{32, x1} active#_A(x1) = max{5, x1} mark_A(x1) = max{18, x1} f_A(x1) = max{37, x1 + 4} s_A(x1) = max{35, x1 + 6} |0|_A = 6 active_A(x1) = max{17, x1} precedence: f > s > mark# = cons = p = active# = mark = |0| = active partial status: pi(mark#) = [] pi(cons) = [] pi(p) = [] pi(active#) = [] pi(mark) = [1] pi(f) = [] pi(s) = [] pi(|0|) = [] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(p(X)) -> mark#(X) p2: mark#(p(X)) -> active#(p(mark(X))) p3: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p4: mark#(f(X)) -> mark#(X) p5: mark#(s(X)) -> active#(s(mark(X))) p6: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(p(X)) -> mark#(X) p2: mark#(f(X)) -> active#(f(mark(X))) p3: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p4: mark#(f(X)) -> mark#(X) p5: mark#(s(X)) -> active#(s(mark(X))) p6: mark#(p(X)) -> active#(p(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 26 p_A(x1) = max{20, x1 + 9} f_A(x1) = max{25, x1 + 4} active#_A(x1) = x1 + 26 mark_A(x1) = max{1, x1} s_A(x1) = max{4, x1 - 7} |0|_A = 5 active_A(x1) = max{3, x1} cons_A(x1,x2) = max{8, x1 + 5, x2} precedence: mark# = p = f = active# = mark = s = |0| = active = cons partial status: pi(mark#) = [] pi(p) = [] pi(f) = [] pi(active#) = [] pi(mark) = [1] pi(s) = [] pi(|0|) = [] pi(active) = [1] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p3: mark#(f(X)) -> mark#(X) p4: mark#(s(X)) -> active#(s(mark(X))) p5: mark#(p(X)) -> active#(p(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p3: mark#(f(X)) -> mark#(X) p4: mark#(p(X)) -> active#(p(mark(X))) p5: mark#(s(X)) -> active#(s(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 52 f_A(x1) = max{34, x1 + 10} active#_A(x1) = x1 + 44 mark_A(x1) = max{12, x1} s_A(x1) = max{25, x1 + 13} |0|_A = 19 p_A(x1) = max{0, x1 - 12} active_A(x1) = max{11, x1} cons_A(x1,x2) = max{28, x1 + 15} precedence: mark# = f = active# = mark = s = |0| = p = active = cons partial status: pi(mark#) = [] pi(f) = [] pi(active#) = [] pi(mark) = [1] pi(s) = [] pi(|0|) = [] pi(p) = [] pi(active) = [1] pi(cons) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p3: mark#(f(X)) -> mark#(X) p4: mark#(p(X)) -> active#(p(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p3: mark#(f(X)) -> mark#(X) p4: mark#(p(X)) -> active#(p(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{29, x1 + 13} f_A(x1) = max{5, x1 + 3} active#_A(x1) = max{29, x1 + 13} mark_A(x1) = max{2, x1} s_A(x1) = max{12, x1 + 4} |0|_A = 8 p_A(x1) = max{12, x1} active_A(x1) = x1 cons_A(x1,x2) = 1 precedence: mark# = f = active# = mark = s = |0| = p = active = cons partial status: pi(mark#) = [1] pi(f) = [] pi(active#) = [1] pi(mark) = [1] pi(s) = [] pi(|0|) = [] pi(p) = [] pi(active) = [1] pi(cons) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) p3: mark#(p(X)) -> active#(p(mark(X))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> active#(f(mark(X))) p2: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 11 f_A(x1) = max{47, x1 + 6} active#_A(x1) = max{5, x1 - 11} mark_A(x1) = max{48, x1 + 9} s_A(x1) = max{78, x1 + 38} |0|_A = 24 p_A(x1) = max{56, x1 - 28} active_A(x1) = max{48, x1} cons_A(x1,x2) = max{39, x2 - 45} precedence: f > active# = mark = s = |0| = active > p > mark# = cons partial status: pi(mark#) = [1] pi(f) = [] pi(active#) = [] pi(mark) = [] pi(s) = [] pi(|0|) = [] pi(p) = [] pi(active) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(s(|0|()))) -> mark#(f(p(s(|0|())))) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(active(X)) -> f#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: f# = mark = active partial status: pi(f#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(active(X)) -> f#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(active(X)) -> f#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: f# = active partial status: pi(f#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) p3: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,mark(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: cons# = active partial status: pi(cons#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = max{3, x1 + 2} mark_A(x1) = x1 active_A(x1) = x1 + 1 precedence: s# = mark = active partial status: pi(s#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: s# = active partial status: pi(s#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(mark(X)) -> p#(X) p2: p#(active(X)) -> p#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: p#_A(x1) = max{3, x1 + 2} mark_A(x1) = x1 active_A(x1) = x1 + 1 precedence: p# = mark = active partial status: pi(p#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: p#(active(X)) -> p#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(active(X)) -> p#(X) and R consists of: r1: active(f(|0|())) -> mark(cons(|0|(),f(s(|0|())))) r2: active(f(s(|0|()))) -> mark(f(p(s(|0|())))) r3: active(p(s(X))) -> mark(X) r4: mark(f(X)) -> active(f(mark(X))) r5: mark(|0|()) -> active(|0|()) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(p(X)) -> active(p(mark(X))) r9: f(mark(X)) -> f(X) r10: f(active(X)) -> f(X) r11: cons(mark(X1),X2) -> cons(X1,X2) r12: cons(X1,mark(X2)) -> cons(X1,X2) r13: cons(active(X1),X2) -> cons(X1,X2) r14: cons(X1,active(X2)) -> cons(X1,X2) r15: s(mark(X)) -> s(X) r16: s(active(X)) -> s(X) r17: p(mark(X)) -> p(X) r18: p(active(X)) -> p(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: p#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: p# = active partial status: pi(p#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.