YES We show the termination of the TRS R: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) sqr(|0|()) -> |0|() sqr(s(X)) -> s(add(sqr(X),dbl(X))) dbl(|0|()) -> |0|() dbl(s(X)) -> s(s(dbl(X))) add(|0|(),X) -> X add(s(X),Y) -> s(add(X,Y)) first(|0|(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) half(|0|()) -> |0|() half(s(|0|())) -> |0|() half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: terms#(N) -> sqr#(N) p2: sqr#(s(X)) -> s#(add(sqr(X),dbl(X))) p3: sqr#(s(X)) -> add#(sqr(X),dbl(X)) p4: sqr#(s(X)) -> sqr#(X) p5: sqr#(s(X)) -> dbl#(X) p6: dbl#(s(X)) -> s#(s(dbl(X))) p7: dbl#(s(X)) -> s#(dbl(X)) p8: dbl#(s(X)) -> dbl#(X) p9: add#(s(X),Y) -> s#(add(X,Y)) p10: add#(s(X),Y) -> add#(X,Y) p11: first#(s(X),cons(Y,Z)) -> activate#(Z) p12: half#(s(s(X))) -> s#(half(X)) p13: half#(s(s(X))) -> half#(X) p14: activate#(n__terms(X)) -> terms#(activate(X)) p15: activate#(n__terms(X)) -> activate#(X) p16: activate#(n__s(X)) -> s#(activate(X)) p17: activate#(n__s(X)) -> activate#(X) p18: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p19: activate#(n__first(X1,X2)) -> activate#(X1) p20: activate#(n__first(X1,X2)) -> activate#(X2) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The estimated dependency graph contains the following SCCs: {p11, p15, p17, p18, p19, p20} {p4} {p10} {p8} {p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__first(X1,X2)) -> activate#(X2) p2: activate#(n__first(X1,X2)) -> activate#(X1) p3: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p4: first#(s(X),cons(Y,Z)) -> activate#(Z) p5: activate#(n__s(X)) -> activate#(X) p6: activate#(n__terms(X)) -> activate#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r14, r15, r16, r17, r18, r19, r20 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: activate#_A(x1) = max{0, x1 - 1} n__first_A(x1,x2) = max{x1 + 8, x2 + 8} first#_A(x1,x2) = max{x1 + 1, x2 + 1} activate_A(x1) = x1 s_A(x1) = max{2, x1} cons_A(x1,x2) = max{5, x1 + 1, x2 - 2} n__s_A(x1) = max{2, x1} n__terms_A(x1) = x1 + 7 dbl_A(x1) = max{2, x1 - 1} |0|_A = 0 add_A(x1,x2) = max{x1 - 4, x2 + 9} sqr_A(x1) = max{11, x1 + 8} terms_A(x1) = x1 + 7 recip_A(x1) = max{5, x1 - 6} first_A(x1,x2) = max{x1 + 8, x2 + 8} nil_A = 2 precedence: activate# = n__first = first# = activate = s = cons = n__s = n__terms = dbl = |0| = add = sqr = terms = recip = first = nil partial status: pi(activate#) = [] pi(n__first) = [] pi(first#) = [1, 2] pi(activate) = [1] pi(s) = [] pi(cons) = [] pi(n__s) = [] pi(n__terms) = [1] pi(dbl) = [] pi(|0|) = [] pi(add) = [] pi(sqr) = [1] pi(terms) = [1] pi(recip) = [] pi(first) = [2] pi(nil) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__first(X1,X2)) -> activate#(X2) p2: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p3: first#(s(X),cons(Y,Z)) -> activate#(Z) p4: activate#(n__s(X)) -> activate#(X) p5: activate#(n__terms(X)) -> activate#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__first(X1,X2)) -> activate#(X2) p2: activate#(n__terms(X)) -> activate#(X) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p5: first#(s(X),cons(Y,Z)) -> activate#(Z) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r14, r15, r16, r17, r18, r19, r20 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: activate#_A(x1) = max{5, x1} n__first_A(x1,x2) = max{x1 + 15, x2 + 15} n__terms_A(x1) = max{11, x1 + 6} n__s_A(x1) = max{5, x1} first#_A(x1,x2) = max{x1 + 15, x2 + 14} activate_A(x1) = x1 s_A(x1) = max{5, x1} cons_A(x1,x2) = max{5, x1 - 1, x2} dbl_A(x1) = x1 + 6 |0|_A = 13 add_A(x1,x2) = max{x1, x2 + 9} sqr_A(x1) = x1 + 15 terms_A(x1) = max{11, x1 + 6} recip_A(x1) = max{2, x1 - 10} first_A(x1,x2) = max{x1 + 15, x2 + 15} nil_A = 14 precedence: activate = terms = recip = nil > first > n__first = cons = dbl > n__terms = |0| = sqr > add > s > activate# = n__s = first# partial status: pi(activate#) = [1] pi(n__first) = [] pi(n__terms) = [1] pi(n__s) = [1] pi(first#) = [2] pi(activate) = [1] pi(s) = [1] pi(cons) = [2] pi(dbl) = [1] pi(|0|) = [] pi(add) = [1, 2] pi(sqr) = [1] pi(terms) = [1] pi(recip) = [] pi(first) = [] pi(nil) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__first(X1,X2)) -> activate#(X2) p2: activate#(n__terms(X)) -> activate#(X) p3: activate#(n__s(X)) -> activate#(X) p4: first#(s(X),cons(Y,Z)) -> activate#(Z) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__first(X1,X2)) -> activate#(X2) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__terms(X)) -> activate#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: activate#_A(x1) = x1 + 2 n__first_A(x1,x2) = x2 n__s_A(x1) = x1 n__terms_A(x1) = x1 precedence: activate# = n__first = n__s = n__terms partial status: pi(activate#) = [1] pi(n__first) = [2] pi(n__s) = [1] pi(n__terms) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__first(X1,X2)) -> activate#(X2) p2: activate#(n__terms(X)) -> activate#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__first(X1,X2)) -> activate#(X2) p2: activate#(n__terms(X)) -> activate#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: activate#_A(x1) = max{5, x1 + 2} n__first_A(x1,x2) = x2 + 3 n__terms_A(x1) = max{3, x1} precedence: activate# = n__first = n__terms partial status: pi(activate#) = [1] pi(n__first) = [2] pi(n__terms) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__terms(X)) -> activate#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__terms(X)) -> activate#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: activate#_A(x1) = x1 + 2 n__terms_A(x1) = x1 + 2 precedence: activate# = n__terms partial status: pi(activate#) = [1] pi(n__terms) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sqr#(s(X)) -> sqr#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: sqr#_A(x1) = x1 + 1 s_A(x1) = x1 precedence: sqr# = s partial status: pi(sqr#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(s(X),Y) -> add#(X,Y) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: add#_A(x1,x2) = max{0, x1 - 2} s_A(x1) = max{3, x1 + 1} precedence: add# = s partial status: pi(add#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> dbl#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: dbl#_A(x1) = x1 + 2 s_A(x1) = x1 + 2 precedence: dbl# = s partial status: pi(dbl#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(X))) -> half#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(X))) -> s(half(X)) r13: half(dbl(X)) -> X r14: terms(X) -> n__terms(X) r15: s(X) -> n__s(X) r16: first(X1,X2) -> n__first(X1,X2) r17: activate(n__terms(X)) -> terms(activate(X)) r18: activate(n__s(X)) -> s(activate(X)) r19: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r20: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: half#_A(x1) = x1 + 5 s_A(x1) = x1 + 2 precedence: half# = s partial status: pi(half#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.