YES We show the termination of the TRS R: minus_active(|0|(),y) -> |0|() mark(|0|()) -> |0|() minus_active(s(x),s(y)) -> minus_active(x,y) mark(s(x)) -> s(mark(x)) ge_active(x,|0|()) -> true() mark(minus(x,y)) -> minus_active(x,y) ge_active(|0|(),s(y)) -> false() mark(ge(x,y)) -> ge_active(x,y) ge_active(s(x),s(y)) -> ge_active(x,y) mark(div(x,y)) -> div_active(mark(x),y) div_active(|0|(),s(y)) -> |0|() mark(if(x,y,z)) -> if_active(mark(x),y,z) div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) if_active(true(),x,y) -> mark(x) minus_active(x,y) -> minus(x,y) if_active(false(),x,y) -> mark(y) ge_active(x,y) -> ge(x,y) if_active(x,y,z) -> if(x,y,z) div_active(x,y) -> div(x,y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus_active#(s(x),s(y)) -> minus_active#(x,y) p2: mark#(s(x)) -> mark#(x) p3: mark#(minus(x,y)) -> minus_active#(x,y) p4: mark#(ge(x,y)) -> ge_active#(x,y) p5: ge_active#(s(x),s(y)) -> ge_active#(x,y) p6: mark#(div(x,y)) -> div_active#(mark(x),y) p7: mark#(div(x,y)) -> mark#(x) p8: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p9: mark#(if(x,y,z)) -> mark#(x) p10: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p11: div_active#(s(x),s(y)) -> ge_active#(x,y) p12: if_active#(true(),x,y) -> mark#(x) p13: if_active#(false(),x,y) -> mark#(y) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p2, p6, p7, p8, p9, p10, p12, p13} {p1} {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(if(x,y,z)) -> mark#(x) p3: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p4: if_active#(true(),x,y) -> mark#(x) p5: mark#(div(x,y)) -> mark#(x) p6: mark#(div(x,y)) -> div_active#(mark(x),y) p7: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p8: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: if_active#_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (6,25) false_A() = (6,24) mark#_A(x1) = ((1,0),(1,0)) x1 + (5,25) if_A(x1,x2,x3) = ((1,0),(0,0)) x1 + x2 + x3 + (2,0) mark_A(x1) = x1 + (8,0) true_A() = (7,25) div_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,0)) x2 + (4,24) div_active#_A(x1,x2) = ((0,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (8,18) s_A(x1) = x1 + (7,24) ge_active_A(x1,x2) = ((0,0),(0,1)) x2 + (8,49) minus_A(x1,x2) = ((0,0),(0,1)) x1 + (8,0) |0|_A() = (5,0) minus_active_A(x1,x2) = ((0,0),(0,1)) x1 + (9,0) div_active_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,0)) x2 + (4,24) if_active_A(x1,x2,x3) = ((1,0),(0,0)) x1 + x2 + x3 + (2,0) ge_A(x1,x2) = ((0,0),(0,1)) x2 + (8,49) precedence: if_active# = false = mark# = if = mark = true = div = div_active# = s = ge_active = minus = |0| = minus_active = div_active = if_active = ge partial status: pi(if_active#) = [] pi(false) = [] pi(mark#) = [] pi(if) = [] pi(mark) = [] pi(true) = [] pi(div) = [] pi(div_active#) = [] pi(s) = [] pi(ge_active) = [] pi(minus) = [] pi(|0|) = [] pi(minus_active) = [] pi(div_active) = [] pi(if_active) = [] pi(ge) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p3: if_active#(true(),x,y) -> mark#(x) p4: mark#(div(x,y)) -> mark#(x) p5: mark#(div(x,y)) -> div_active#(mark(x),y) p6: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p7: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(s(x)) -> mark#(x) p3: mark#(div(x,y)) -> div_active#(mark(x),y) p4: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p5: if_active#(true(),x,y) -> mark#(x) p6: mark#(div(x,y)) -> mark#(x) p7: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: if_active#_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (2,1) false_A() = (0,1) mark#_A(x1) = ((0,1),(0,1)) x1 + (2,1) s_A(x1) = x1 + (3,1) div_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(1,0)) x2 + (1,1) div_active#_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (2,2) mark_A(x1) = ((1,1),(1,1)) x1 ge_active_A(x1,x2) = (0,1) minus_A(x1,x2) = (0,0) |0|_A() = (0,0) true_A() = (0,1) if_A(x1,x2,x3) = ((1,1),(0,1)) x2 + ((1,1),(1,1)) x3 minus_active_A(x1,x2) = (0,0) div_active_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(1,0)) x2 + (2,2) if_active_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 ge_A(x1,x2) = (0,1) precedence: if_active# = false = mark# = s = div = div_active# = mark = ge_active = minus = |0| = true = if = minus_active = div_active = if_active = ge partial status: pi(if_active#) = [] pi(false) = [] pi(mark#) = [] pi(s) = [] pi(div) = [] pi(div_active#) = [] pi(mark) = [] pi(ge_active) = [] pi(minus) = [] pi(|0|) = [] pi(true) = [] pi(if) = [] pi(minus_active) = [] pi(div_active) = [] pi(if_active) = [] pi(ge) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(s(x)) -> mark#(x) p3: mark#(div(x,y)) -> div_active#(mark(x),y) p4: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p5: if_active#(true(),x,y) -> mark#(x) p6: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p3: if_active#(true(),x,y) -> mark#(x) p4: mark#(div(x,y)) -> div_active#(mark(x),y) p5: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p6: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: if_active#_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (13,3) false_A() = (3,2) mark#_A(x1) = ((0,1),(0,1)) x1 + (14,3) if_A(x1,x2,x3) = ((0,0),(1,1)) x1 + x2 + x3 + (0,1) mark_A(x1) = x1 + (0,5) true_A() = (2,2) div_A(x1,x2) = ((0,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (2,2) div_active#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (10,0) s_A(x1) = ((0,0),(0,1)) x1 + (13,2) ge_active_A(x1,x2) = ((0,1),(0,0)) x1 + (3,3) minus_A(x1,x2) = (2,1) |0|_A() = (1,1) minus_active_A(x1,x2) = (2,1) div_active_A(x1,x2) = ((0,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (2,2) if_active_A(x1,x2,x3) = ((0,0),(1,1)) x1 + x2 + x3 + (0,1) ge_A(x1,x2) = ((0,1),(0,0)) x1 + (3,1) precedence: if_active# = mark# = div_active# > mark = s = ge_active = div_active = if_active = ge > false > true = div > minus = minus_active > if > |0| partial status: pi(if_active#) = [] pi(false) = [] pi(mark#) = [] pi(if) = [] pi(mark) = [] pi(true) = [] pi(div) = [2] pi(div_active#) = [] pi(s) = [] pi(ge_active) = [] pi(minus) = [] pi(|0|) = [] pi(minus_active) = [] pi(div_active) = [] pi(if_active) = [] pi(ge) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p3: mark#(div(x,y)) -> div_active#(mark(x),y) p4: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p5: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(s(x)) -> mark#(x) p3: mark#(div(x,y)) -> div_active#(mark(x),y) p4: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p5: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: if_active#_A(x1,x2,x3) = ((0,1),(0,0)) x1 + ((1,0),(1,0)) x3 + (1,1) false_A() = (7,4) mark#_A(x1) = ((1,0),(1,0)) x1 + (5,1) s_A(x1) = ((1,0),(0,0)) x1 + (6,1) div_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,0)) x2 + (0,3) div_active#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,1)) x2 + (0,1) mark_A(x1) = ((1,0),(0,0)) x1 + (0,4) ge_active_A(x1,x2) = ((1,0),(0,0)) x2 + (1,4) minus_A(x1,x2) = (0,0) |0|_A() = (0,1) if_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 minus_active_A(x1,x2) = (0,1) div_active_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,0)) x2 + (0,4) if_active_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (0,4) true_A() = (1,4) ge_A(x1,x2) = ((1,0),(0,0)) x2 + (1,0) precedence: if_active# = mark# > mark = |0| = minus_active = div_active = if_active > minus > if > div = div_active# > s > false = ge_active = true = ge partial status: pi(if_active#) = [] pi(false) = [] pi(mark#) = [] pi(s) = [] pi(div) = [] pi(div_active#) = [2] pi(mark) = [] pi(ge_active) = [] pi(minus) = [] pi(|0|) = [] pi(if) = [] pi(minus_active) = [] pi(div_active) = [] pi(if_active) = [] pi(true) = [] pi(ge) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(s(x)) -> mark#(x) p3: mark#(div(x,y)) -> div_active#(mark(x),y) p4: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p1, p2, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p3: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: if_active#_A(x1,x2,x3) = ((0,1),(0,0)) x3 + (2,3) false_A() = (1,0) mark#_A(x1) = ((0,1),(0,0)) x1 + (1,3) if_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,1),(1,1)) x3 + (0,2) mark_A(x1) = ((1,0),(1,0)) x1 + (0,2) s_A(x1) = x1 minus_active_A(x1,x2) = ((1,0),(0,0)) x1 + (0,1) |0|_A() = (0,0) ge_active_A(x1,x2) = ((0,1),(0,0)) x2 + (2,0) true_A() = (1,0) div_active_A(x1,x2) = ((1,0),(1,0)) x1 + ((0,1),(0,1)) x2 + (2,4) if_active_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,1),(1,1)) x3 + (0,2) div_A(x1,x2) = ((1,0),(1,0)) x1 + ((0,1),(0,0)) x2 + (2,0) minus_A(x1,x2) = ((1,0),(0,0)) x1 + (0,1) ge_A(x1,x2) = ((0,1),(0,0)) x2 + (2,0) precedence: false = mark# = mark = s = minus_active = ge_active = div_active = if_active = ge > if_active# > div > true > minus > if = |0| partial status: pi(if_active#) = [] pi(false) = [] pi(mark#) = [] pi(if) = [] pi(mark) = [] pi(s) = [] pi(minus_active) = [] pi(|0|) = [] pi(ge_active) = [] pi(true) = [] pi(div_active) = [] pi(if_active) = [] pi(div) = [] pi(minus) = [] pi(ge) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p2: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (2,2) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: mark# = s partial status: pi(mark#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus_active#(s(x),s(y)) -> minus_active#(x,y) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: minus_active#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (2,2) s_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: minus_active# = s partial status: pi(minus_active#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ge_active#(s(x),s(y)) -> ge_active#(x,y) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: ge_active#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (2,2) s_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: ge_active# = s partial status: pi(ge_active#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.