YES We show the termination of the TRS R: app(app(plus(),|0|()),y) -> y app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) app(app(times(),|0|()),y) -> |0|() app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs) app(double(),xs) -> app(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) app(app(map(),f),nil()) -> nil() app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(s(),app(app(plus(),x),y)) p2: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) p3: app#(app(plus(),app(s(),x)),y) -> app#(plus(),x) p4: app#(app(times(),app(s(),x)),y) -> app#(app(plus(),app(app(times(),x),y)),y) p5: app#(app(times(),app(s(),x)),y) -> app#(plus(),app(app(times(),x),y)) p6: app#(app(times(),app(s(),x)),y) -> app#(app(times(),x),y) p7: app#(app(times(),app(s(),x)),y) -> app#(times(),x) p8: app#(inc(),xs) -> app#(app(map(),app(plus(),app(s(),|0|()))),xs) p9: app#(inc(),xs) -> app#(map(),app(plus(),app(s(),|0|()))) p10: app#(inc(),xs) -> app#(plus(),app(s(),|0|())) p11: app#(inc(),xs) -> app#(s(),|0|()) p12: app#(double(),xs) -> app#(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) p13: app#(double(),xs) -> app#(map(),app(times(),app(s(),app(s(),|0|())))) p14: app#(double(),xs) -> app#(times(),app(s(),app(s(),|0|()))) p15: app#(double(),xs) -> app#(s(),app(s(),|0|())) p16: app#(double(),xs) -> app#(s(),|0|()) p17: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(cons(),app(f,x)),app(app(map(),f),xs)) p18: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(cons(),app(f,x)) p19: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p20: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs) r6: app(double(),xs) -> app(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) r7: app(app(map(),f),nil()) -> nil() r8: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The estimated dependency graph contains the following SCCs: {p8, p12, p19, p20} {p6} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) p3: app#(double(),xs) -> app#(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) p4: app#(inc(),xs) -> app#(app(map(),app(plus(),app(s(),|0|()))),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs) r6: app(double(),xs) -> app(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) r7: app(app(map(),f),nil()) -> nil() r8: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((0,1),(0,1)) x1 + (8,6) app_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,0),(0,1)) x2 + (0,2) map_A() = (19,0) cons_A() = (20,1) double_A() = (2,10) times_A() = (1,17) s_A() = (21,21) |0|_A() = (19,1) inc_A() = (1,12) plus_A() = (21,21) precedence: app# = app = map = cons = double = times = s = |0| = inc = plus partial status: pi(app#) = [] pi(app) = [] pi(map) = [] pi(cons) = [] pi(double) = [] pi(times) = [] pi(s) = [] pi(|0|) = [] pi(inc) = [] pi(plus) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) p3: app#(double(),xs) -> app#(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs) r6: app(double(),xs) -> app(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) r7: app(app(map(),f),nil()) -> nil() r8: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(double(),xs) -> app#(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) p3: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs) r6: app(double(),xs) -> app(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) r7: app(app(map(),f),nil()) -> nil() r8: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,0),(0,0)) x1 + (19,4) app_A(x1,x2) = ((1,1),(0,0)) x2 + (1,2) map_A() = (18,3) cons_A() = (2,1) double_A() = (17,1) times_A() = (18,2) s_A() = (1,5) |0|_A() = (1,5) precedence: app# = app = map = cons = double = times = s = |0| partial status: pi(app#) = [] pi(app) = [] pi(map) = [] pi(cons) = [] pi(double) = [] pi(times) = [] pi(s) = [] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs) r6: app(double(),xs) -> app(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) r7: app(app(map(),f),nil()) -> nil() r8: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs) r6: app(double(),xs) -> app(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) r7: app(app(map(),f),nil()) -> nil() r8: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,0),(1,1)) x1 + (3,3) app_A(x1,x2) = x2 + (2,2) map_A() = (0,0) cons_A() = (1,1) precedence: app# = app = cons > map partial status: pi(app#) = [] pi(app) = [2] pi(map) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs) r6: app(double(),xs) -> app(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) r7: app(app(map(),f),nil()) -> nil() r8: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs) r6: app(double(),xs) -> app(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) r7: app(app(map(),f),nil()) -> nil() r8: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,0),(1,0)) x2 + (4,3) app_A(x1,x2) = ((1,0),(0,0)) x2 + (2,2) map_A() = (1,1) cons_A() = (3,2) precedence: app# = app = map = cons partial status: pi(app#) = [] pi(app) = [] pi(map) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(times(),app(s(),x)),y) -> app#(app(times(),x),y) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs) r6: app(double(),xs) -> app(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) r7: app(app(map(),f),nil()) -> nil() r8: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (2,6) app_A(x1,x2) = x2 + (1,2) times_A() = (5,5) s_A() = (6,1) precedence: app# > times > app > s partial status: pi(app#) = [] pi(app) = [] pi(times) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs) r6: app(double(),xs) -> app(app(map(),app(times(),app(s(),app(s(),|0|())))),xs) r7: app(app(map(),f),nil()) -> nil() r8: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (0,6) app_A(x1,x2) = x2 + (1,2) plus_A() = (3,5) s_A() = (4,1) precedence: app# = app > plus > s partial status: pi(app#) = [] pi(app) = [] pi(plus) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.