YES We show the termination of the TRS R: g(A()) -> A() g(B()) -> A() g(B()) -> B() g(C()) -> A() g(C()) -> B() g(C()) -> C() foldf(x,nil()) -> x foldf(x,cons(y,z)) -> f(foldf(x,z),y) f(t,x) -> |f'|(t,g(x)) |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: foldf#(x,cons(y,z)) -> foldf#(x,z) p3: f#(t,x) -> |f'|#(t,g(x)) p4: f#(t,x) -> g#(x) p5: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p6: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p7: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p8: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p4: foldf#(x,cons(y,z)) -> foldf#(x,z) p5: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p6: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) p7: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: foldf#_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (19,1) cons_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (18,0) f#_A(x1,x2) = ((0,1),(0,1)) x1 + (30,10) foldf_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (38,1) |f'|#_A(x1,x2) = ((0,1),(0,1)) x1 + (30,10) g_A(x1) = x1 triple_A(x1,x2,x3) = ((0,0),(1,1)) x2 + ((0,0),(1,1)) x3 + (4,2) A_A() = (0,1) nil_A() = (1,3) |f''|#_A(x1) = ((0,1),(0,1)) x1 + (24,5) B_A() = (2,1) |f''|_A(x1) = ((0,1),(0,1)) x1 + (47,5) |f'|_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(1,1)) x2 + (53,18) C_A() = (3,3) f_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(1,1)) x2 + (54,18) precedence: foldf = triple = |f''| = |f'| = f > |f''|# > foldf# = f# = |f'|# = g = B = C > cons = A = nil partial status: pi(foldf#) = [] pi(cons) = [] pi(f#) = [] pi(foldf) = [] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(A) = [] pi(nil) = [] pi(|f''|#) = [] pi(B) = [] pi(|f''|) = [] pi(|f'|) = [] pi(C) = [] pi(f) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p4: foldf#(x,cons(y,z)) -> foldf#(x,z) p5: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p6: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p4: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p5: foldf#(x,cons(y,z)) -> foldf#(x,z) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: foldf#_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (13,5) cons_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (12,0) f#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (11,1) foldf_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (5,2) |f'|#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (10,1) g_A(x1) = ((0,0),(0,1)) x1 + (12,0) triple_A(x1,x2,x3) = ((0,0),(1,1)) x2 + ((0,0),(1,0)) x3 + (1,0) B_A() = (11,19) A_A() = (10,7) nil_A() = (2,1) |f''|_A(x1) = ((0,1),(0,1)) x1 + (9,4) |f'|_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(1,1)) x2 + (13,0) C_A() = (12,19) f_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (14,12) precedence: foldf = |f''| = |f'| = f > foldf# = cons = f# = |f'|# = g = triple = A > B > nil > C partial status: pi(foldf#) = [] pi(cons) = [2] pi(f#) = [] pi(foldf) = [] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(B) = [] pi(A) = [] pi(nil) = [] pi(|f''|) = [] pi(|f'|) = [] pi(C) = [] pi(f) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p4: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p4: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: foldf#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (13,0) cons_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,0)) x2 + (17,1) f#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (16,0) foldf_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,1)) x2 + (0,2) |f'|#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (15,0) g_A(x1) = ((1,1),(1,0)) x1 + (0,1) triple_A(x1,x2,x3) = ((0,0),(1,1)) x2 + ((0,0),(1,1)) x3 + (5,0) A_A() = (0,1) nil_A() = (2,0) B_A() = (3,4) |f''|_A(x1) = ((0,1),(0,1)) x1 + (8,4) |f'|_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(1,0)) x2 + (12,18) C_A() = (4,0) f_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (14,18) precedence: foldf = |f''| = |f'| = f > cons > g = triple = A = B = C > nil > foldf# = f# = |f'|# partial status: pi(foldf#) = [] pi(cons) = [] pi(f#) = [] pi(foldf) = [] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(A) = [] pi(nil) = [] pi(B) = [] pi(|f''|) = [] pi(|f'|) = [] pi(C) = [] pi(f) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: foldf#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(0,0)) x2 + (5,1) cons_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(0,1)) x2 + (0,6) f#_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(0,0)) x2 + (4,1) foldf_A(x1,x2) = ((1,0),(1,1)) x1 |f'|#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,0)) x2 + (1,1) g_A(x1) = ((1,1),(1,1)) x1 + (5,2) triple_A(x1,x2,x3) = ((0,0),(1,0)) x2 + (0,3) A_A() = (7,5) nil_A() = (0,3) |f''|_A(x1) = ((0,0),(0,1)) x1 |f'|_A(x1,x2) = x1 C_A() = (8,6) B_A() = (9,7) f_A(x1,x2) = x1 precedence: foldf# = cons = foldf = g = triple = A = |f''| = |f'| = C = f > f# = |f'|# = B > nil partial status: pi(foldf#) = [] pi(cons) = [] pi(f#) = [] pi(foldf) = [] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(A) = [] pi(nil) = [] pi(|f''|) = [] pi(|f'|) = [] pi(C) = [] pi(B) = [] pi(f) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: (no SCCs)