YES We show the termination of the TRS R: g(A()) -> A() g(B()) -> A() g(B()) -> B() g(C()) -> A() g(C()) -> B() g(C()) -> C() foldB(t,|0|()) -> t foldB(t,s(n)) -> f(foldB(t,n),B()) foldC(t,|0|()) -> t foldC(t,s(n)) -> f(foldC(t,n),C()) f(t,x) -> |f'|(t,g(x)) |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: foldB#(t,s(n)) -> foldB#(t,n) p3: foldC#(t,s(n)) -> f#(foldC(t,n),C()) p4: foldC#(t,s(n)) -> foldC#(t,n) p5: f#(t,x) -> |f'|#(t,g(x)) p6: f#(t,x) -> g#(x) p7: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p8: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p9: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) p10: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) p4: foldB#(t,s(n)) -> foldB#(t,n) p5: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p6: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) p7: foldC#(t,s(n)) -> foldC#(t,n) p8: foldC#(t,s(n)) -> f#(foldC(t,n),C()) p9: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: foldB#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (8,8) s_A(x1) = x1 + (23,48) f#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (64,8) foldB_A(x1,x2) = x1 + ((0,1),(1,1)) x2 + (17,9) B_A() = (24,5) |f'|#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (37,8) g_A(x1) = ((0,1),(0,0)) x1 + (20,6) triple_A(x1,x2,x3) = ((0,1),(1,1)) x2 + ((0,1),(0,1)) x3 + (0,6) A_A() = (0,1) |0|_A() = (1,1) |f''|#_A(x1) = ((0,1),(0,0)) x1 + (26,8) foldC#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (24,8) foldC_A(x1,x2) = x1 + ((0,1),(0,1)) x2 + (1,1) C_A() = (26,6) |f''|_A(x1) = x1 + (3,2) |f'|_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (22,48) f_A(x1,x2) = x1 + ((0,1),(0,0)) x2 + (42,48) precedence: foldB = g = foldC = C = |f''| = |f'| = f > triple = A > foldB# = f# = |f'|# = |f''|# = foldC# > |0| > s = B partial status: pi(foldB#) = [] pi(s) = [1] pi(f#) = [] pi(foldB) = [] pi(B) = [] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(A) = [] pi(|0|) = [] pi(|f''|#) = [] pi(foldC#) = [] pi(foldC) = [] pi(C) = [] pi(|f''|) = [] pi(|f'|) = [] pi(f) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) p4: foldB#(t,s(n)) -> foldB#(t,n) p5: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p6: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) p7: foldC#(t,s(n)) -> foldC#(t,n) p8: foldC#(t,s(n)) -> f#(foldC(t,n),C()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p4: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) p5: foldC#(t,s(n)) -> f#(foldC(t,n),C()) p6: foldC#(t,s(n)) -> foldC#(t,n) p7: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) p8: foldB#(t,s(n)) -> foldB#(t,n) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: foldB#_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (13,17) s_A(x1) = x1 + (14,16) f#_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(0,0)) x2 + (21,19) foldB_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (0,2) B_A() = (2,3) |f'|#_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(0,0)) x2 + (20,19) g_A(x1) = x1 triple_A(x1,x2,x3) = ((0,0),(0,1)) x2 + ((0,0),(1,0)) x3 + (4,1) A_A() = (1,2) |f''|#_A(x1) = ((0,1),(0,1)) x1 + (20,17) |0|_A() = (0,0) foldC#_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (15,17) foldC_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (1,0) C_A() = (3,4) |f''|_A(x1) = ((0,1),(0,1)) x1 + (6,8) |f'|_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(1,1)) x2 + (10,7) f_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(1,1)) x2 + (11,7) precedence: foldB = g = triple > B = foldC = |f''| = |f'| = f > A = C > |0| > foldB# = f# = |f'|# = |f''|# = foldC# > s partial status: pi(foldB#) = [] pi(s) = [] pi(f#) = [] pi(foldB) = [1] pi(B) = [] pi(|f'|#) = [] pi(g) = [1] pi(triple) = [] pi(A) = [] pi(|f''|#) = [] pi(|0|) = [] pi(foldC#) = [] pi(foldC) = [] pi(C) = [] pi(|f''|) = [] pi(|f'|) = [] pi(f) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p4: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) p5: foldC#(t,s(n)) -> f#(foldC(t,n),C()) p6: foldC#(t,s(n)) -> foldC#(t,n) p7: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) p4: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p5: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) p6: foldC#(t,s(n)) -> foldC#(t,n) p7: foldC#(t,s(n)) -> f#(foldC(t,n),C()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: foldB#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (1,27) s_A(x1) = ((1,1),(0,1)) x1 + (11,26) f#_A(x1,x2) = ((0,1),(0,0)) x1 + (21,27) foldB_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,1)) x2 + (39,1) B_A() = (24,24) |f'|#_A(x1,x2) = ((0,1),(0,0)) x1 + (20,27) g_A(x1) = ((1,0),(1,0)) x1 + (2,1) triple_A(x1,x2,x3) = ((0,0),(1,1)) x2 + ((0,0),(0,1)) x3 + (2,1) A_A() = (21,22) |0|_A() = (1,1) |f''|#_A(x1) = ((0,1),(0,0)) x1 + (16,27) foldC#_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (12,27) foldC_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x2 + (23,1) C_A() = (23,24) |f''|_A(x1) = ((0,1),(0,1)) x1 + (27,19) |f'|_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (22,2) f_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (24,3) precedence: |0| > |f''|# > foldB# = |f'|# > f# = foldC# > foldB = foldC = |f''| = |f'| = f > s > triple > B = g = A > C partial status: pi(foldB#) = [] pi(s) = [] pi(f#) = [] pi(foldB) = [] pi(B) = [] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(A) = [] pi(|0|) = [] pi(|f''|#) = [] pi(foldC#) = [] pi(foldC) = [] pi(C) = [] pi(|f''|) = [] pi(|f'|) = [] pi(f) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) p4: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p5: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) p6: foldC#(t,s(n)) -> f#(foldC(t,n),C()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p4: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) p5: foldC#(t,s(n)) -> f#(foldC(t,n),C()) p6: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: foldB#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (61,31) s_A(x1) = x1 + (62,2) f#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (64,31) foldB_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (63,30) B_A() = (9,31) |f'|#_A(x1,x2) = ((0,1),(0,0)) x1 + (63,31) g_A(x1) = ((1,0),(1,1)) x1 + (0,19) triple_A(x1,x2,x3) = ((0,0),(1,1)) x2 + ((0,0),(1,0)) x3 + (10,0) A_A() = (0,1) |f''|#_A(x1) = ((0,1),(0,0)) x1 + (11,31) |0|_A() = (2,0) foldC#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (7,31) foldC_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (2,3) C_A() = (11,1) |f''|_A(x1) = ((0,1),(0,1)) x1 + (15,5) |f'|_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (48,51) f_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (49,51) precedence: triple = |f'| > |f''| > foldC > f > foldB > |f''|# > |0| = foldC# > B = g = C > foldB# = s = f# = |f'|# > A partial status: pi(foldB#) = [] pi(s) = [] pi(f#) = [] pi(foldB) = [1] pi(B) = [] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(A) = [] pi(|f''|#) = [] pi(|0|) = [] pi(foldC#) = [] pi(foldC) = [] pi(C) = [] pi(|f''|) = [] pi(|f'|) = [] pi(f) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p4: foldC#(t,s(n)) -> f#(foldC(t,n),C()) p5: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: foldB#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (2,3) s_A(x1) = ((1,1),(0,0)) x1 + (28,4) f#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (27,3) foldB_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,1)) x2 + (35,5) B_A() = (1,2) |f'|#_A(x1,x2) = ((0,1),(0,0)) x1 + (26,3) g_A(x1) = ((0,1),(0,0)) x1 + (25,33) triple_A(x1,x2,x3) = ((0,0),(1,1)) x2 + ((0,1),(1,1)) x3 + (2,3) A_A() = (0,1) |0|_A() = (1,4) foldC_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,5) f_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(0,0)) x2 + (24,32) C_A() = (3,1) |f''|_A(x1) = ((0,1),(0,1)) x1 + (13,10) |f'|_A(x1,x2) = ((0,1),(0,1)) x1 + (24,32) precedence: foldB = foldC = f = |f''| = |f'| > s > triple > foldB# = |f'|# > f# = g = A > B > C > |0| partial status: pi(foldB#) = [] pi(s) = [] pi(f#) = [] pi(foldB) = [1, 2] pi(B) = [] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(A) = [] pi(|0|) = [] pi(foldC) = [] pi(f) = [] pi(C) = [] pi(|f''|) = [] pi(|f'|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(t,x) -> |f'|#(t,g(x)) p2: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The estimated dependency graph contains the following SCCs: (no SCCs)