YES We show the termination of the TRS R: D(t()) -> |1|() D(constant()) -> |0|() D(+(x,y)) -> +(D(x),D(y)) D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(-(x,y)) -> -(D(x),D(y)) D(minus(x)) -> minus(D(x)) D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) D(ln(x)) -> div(D(x),x) D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(+(x,y)) -> D#(y) p3: D#(*(x,y)) -> D#(x) p4: D#(*(x,y)) -> D#(y) p5: D#(-(x,y)) -> D#(x) p6: D#(-(x,y)) -> D#(y) p7: D#(minus(x)) -> D#(x) p8: D#(div(x,y)) -> D#(x) p9: D#(div(x,y)) -> D#(y) p10: D#(ln(x)) -> D#(x) p11: D#(pow(x,y)) -> D#(x) p12: D#(pow(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(pow(x,y)) -> D#(y) p3: D#(pow(x,y)) -> D#(x) p4: D#(ln(x)) -> D#(x) p5: D#(div(x,y)) -> D#(y) p6: D#(div(x,y)) -> D#(x) p7: D#(minus(x)) -> D#(x) p8: D#(-(x,y)) -> D#(y) p9: D#(-(x,y)) -> D#(x) p10: D#(*(x,y)) -> D#(y) p11: D#(*(x,y)) -> D#(x) p12: D#(+(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((1,1),(1,1)) x1 + (2,2) +_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (1,1) pow_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (1,1) ln_A(x1) = ((1,1),(0,0)) x1 + (1,1) div_A(x1,x2) = ((1,1),(0,0)) x1 + x2 + (1,1) minus_A(x1) = x1 + (0,1) -_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (1,1) *_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,1)) x2 + (1,1) precedence: D# = minus > - > + = pow = ln = div = * partial status: pi(D#) = [1] pi(+) = [] pi(pow) = [] pi(ln) = [] pi(div) = [2] pi(minus) = [1] pi(-) = [] pi(*) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(pow(x,y)) -> D#(x) p3: D#(ln(x)) -> D#(x) p4: D#(div(x,y)) -> D#(y) p5: D#(div(x,y)) -> D#(x) p6: D#(minus(x)) -> D#(x) p7: D#(-(x,y)) -> D#(y) p8: D#(-(x,y)) -> D#(x) p9: D#(*(x,y)) -> D#(y) p10: D#(*(x,y)) -> D#(x) p11: D#(+(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(+(x,y)) -> D#(y) p3: D#(*(x,y)) -> D#(x) p4: D#(*(x,y)) -> D#(y) p5: D#(-(x,y)) -> D#(x) p6: D#(-(x,y)) -> D#(y) p7: D#(minus(x)) -> D#(x) p8: D#(div(x,y)) -> D#(x) p9: D#(div(x,y)) -> D#(y) p10: D#(ln(x)) -> D#(x) p11: D#(pow(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((0,1),(0,0)) x1 + (2,2) pow_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,1) +_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) *_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(0,1)) x2 + (3,2) -_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (1,1) minus_A(x1) = ((0,0),(0,1)) x1 + (1,1) div_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (1,1) ln_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: - > minus > D# = pow = * > + > div = ln partial status: pi(D#) = [] pi(pow) = [] pi(+) = [] pi(*) = [] pi(-) = [] pi(minus) = [] pi(div) = [2] pi(ln) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(+(x,y)) -> D#(y) p3: D#(*(x,y)) -> D#(x) p4: D#(*(x,y)) -> D#(y) p5: D#(-(x,y)) -> D#(x) p6: D#(-(x,y)) -> D#(y) p7: D#(minus(x)) -> D#(x) p8: D#(div(x,y)) -> D#(x) p9: D#(div(x,y)) -> D#(y) p10: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(y) p4: D#(div(x,y)) -> D#(x) p5: D#(minus(x)) -> D#(x) p6: D#(-(x,y)) -> D#(y) p7: D#(-(x,y)) -> D#(x) p8: D#(*(x,y)) -> D#(y) p9: D#(*(x,y)) -> D#(x) p10: D#(+(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((1,1),(1,1)) x1 + (2,2) pow_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) ln_A(x1) = ((1,1),(1,1)) x1 + (3,2) div_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (3,2) minus_A(x1) = ((1,1),(0,0)) x1 + (1,1) -_A(x1,x2) = x1 + ((0,1),(1,0)) x2 + (1,1) *_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(0,0)) x2 + (1,1) +_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(1,1)) x2 + (3,1) precedence: div > ln > minus > - > D# = pow > * = + partial status: pi(D#) = [] pi(pow) = [2] pi(ln) = [1] pi(div) = [] pi(minus) = [] pi(-) = [] pi(*) = [] pi(+) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(y) p4: D#(div(x,y)) -> D#(x) p5: D#(minus(x)) -> D#(x) p6: D#(-(x,y)) -> D#(y) p7: D#(-(x,y)) -> D#(x) p8: D#(*(x,y)) -> D#(x) p9: D#(+(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(+(x,y)) -> D#(y) p3: D#(*(x,y)) -> D#(x) p4: D#(-(x,y)) -> D#(x) p5: D#(-(x,y)) -> D#(y) p6: D#(minus(x)) -> D#(x) p7: D#(div(x,y)) -> D#(x) p8: D#(div(x,y)) -> D#(y) p9: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((0,1),(0,0)) x1 + (0,2) pow_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (0,2) +_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,2) *_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,2) -_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (1,1) minus_A(x1) = ((0,0),(0,1)) x1 + (1,1) div_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,1) ln_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: pow > D# = + = div > * > - = minus = ln partial status: pi(D#) = [] pi(pow) = [2] pi(+) = [2] pi(*) = [2] pi(-) = [2] pi(minus) = [] pi(div) = [] pi(ln) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(+(x,y)) -> D#(y) p3: D#(-(x,y)) -> D#(x) p4: D#(-(x,y)) -> D#(y) p5: D#(minus(x)) -> D#(x) p6: D#(div(x,y)) -> D#(x) p7: D#(div(x,y)) -> D#(y) p8: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(y) p4: D#(div(x,y)) -> D#(x) p5: D#(minus(x)) -> D#(x) p6: D#(-(x,y)) -> D#(y) p7: D#(-(x,y)) -> D#(x) p8: D#(+(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((0,1),(0,1)) x1 + (2,2) pow_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(0,1)) x2 + (1,1) ln_A(x1) = ((1,1),(1,1)) x1 + (3,2) div_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (3,2) minus_A(x1) = x1 + (0,1) -_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,1) +_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(0,1)) x2 + (0,1) precedence: D# = ln > div > pow = - > minus = + partial status: pi(D#) = [] pi(pow) = [] pi(ln) = [1] pi(div) = [2] pi(minus) = [1] pi(-) = [] pi(+) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(y) p4: D#(minus(x)) -> D#(x) p5: D#(-(x,y)) -> D#(y) p6: D#(-(x,y)) -> D#(x) p7: D#(+(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(+(x,y)) -> D#(y) p3: D#(-(x,y)) -> D#(x) p4: D#(-(x,y)) -> D#(y) p5: D#(minus(x)) -> D#(x) p6: D#(div(x,y)) -> D#(y) p7: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((0,1),(0,1)) x1 + (2,2) pow_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,1)) x2 + (3,2) +_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) -_A(x1,x2) = ((0,0),(1,1)) x1 + x2 + (1,1) minus_A(x1) = ((0,0),(0,1)) x1 + (1,1) div_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(0,1)) x2 + (1,1) ln_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: D# = pow = + > - = minus > div = ln partial status: pi(D#) = [] pi(pow) = [1] pi(+) = [2] pi(-) = [2] pi(minus) = [] pi(div) = [] pi(ln) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(+(x,y)) -> D#(y) p3: D#(-(x,y)) -> D#(x) p4: D#(minus(x)) -> D#(x) p5: D#(div(x,y)) -> D#(y) p6: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(y) p4: D#(minus(x)) -> D#(x) p5: D#(-(x,y)) -> D#(x) p6: D#(+(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((1,1),(1,1)) x1 + (2,2) pow_A(x1,x2) = ((0,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) ln_A(x1) = ((1,1),(1,1)) x1 + (3,2) div_A(x1,x2) = ((0,0),(1,1)) x1 + x2 + (1,1) minus_A(x1) = ((0,1),(1,0)) x1 + (1,1) -_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(1,1)) x2 + (1,1) +_A(x1,x2) = ((0,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) precedence: minus = - > D# > div = + > ln > pow partial status: pi(D#) = [1] pi(pow) = [2] pi(ln) = [] pi(div) = [2] pi(minus) = [] pi(-) = [] pi(+) = [2] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(y) p4: D#(minus(x)) -> D#(x) p5: D#(-(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(-(x,y)) -> D#(x) p3: D#(minus(x)) -> D#(x) p4: D#(div(x,y)) -> D#(y) p5: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((1,0),(0,0)) x1 + (2,2) pow_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) -_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,1) minus_A(x1) = ((1,1),(0,0)) x1 + (1,1) div_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) ln_A(x1) = x1 + (3,2) precedence: - > pow = minus > D# = div = ln partial status: pi(D#) = [] pi(pow) = [2] pi(-) = [] pi(minus) = [] pi(div) = [2] pi(ln) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(-(x,y)) -> D#(x) p3: D#(minus(x)) -> D#(x) p4: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(ln(x)) -> D#(x) p3: D#(minus(x)) -> D#(x) p4: D#(-(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((0,1),(0,0)) x1 + (2,2) pow_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,1)) x2 + (3,2) ln_A(x1) = x1 + (1,1) minus_A(x1) = ((0,0),(0,1)) x1 + (1,1) -_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (3,1) precedence: pow = ln = minus > D# > - partial status: pi(D#) = [] pi(pow) = [2] pi(ln) = [1] pi(minus) = [] pi(-) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(minus(x)) -> D#(x) p3: D#(-(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(-(x,y)) -> D#(x) p3: D#(minus(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((0,1),(0,1)) x1 + (2,2) pow_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (3,1) -_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) minus_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: D# = pow = - = minus partial status: pi(D#) = [] pi(pow) = [2] pi(-) = [2] pi(minus) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(minus(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(minus(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((1,0),(0,0)) x1 + (2,2) pow_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) minus_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: D# = pow = minus partial status: pi(D#) = [] pi(pow) = [2] pi(minus) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(minus(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(minus(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: D#_A(x1) = ((1,0),(1,0)) x1 + (2,2) minus_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: D# = minus partial status: pi(D#) = [] pi(minus) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.