YES We show the termination of the TRS R: not(not(x)) -> x not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(or(x,y)) -> not#(not(x)) p3: not#(or(x,y)) -> not#(x) p4: not#(or(x,y)) -> not#(not(not(y))) p5: not#(or(x,y)) -> not#(not(y)) p6: not#(or(x,y)) -> not#(y) p7: not#(and(x,y)) -> not#(not(not(x))) p8: not#(and(x,y)) -> not#(not(x)) p9: not#(and(x,y)) -> not#(x) p10: not#(and(x,y)) -> not#(not(not(y))) p11: not#(and(x,y)) -> not#(not(y)) p12: not#(and(x,y)) -> not#(y) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(and(x,y)) -> not#(y) p3: not#(and(x,y)) -> not#(not(y)) p4: not#(and(x,y)) -> not#(not(not(y))) p5: not#(and(x,y)) -> not#(x) p6: not#(and(x,y)) -> not#(not(x)) p7: not#(and(x,y)) -> not#(not(not(x))) p8: not#(or(x,y)) -> not#(y) p9: not#(or(x,y)) -> not#(not(y)) p10: not#(or(x,y)) -> not#(not(not(y))) p11: not#(or(x,y)) -> not#(x) p12: not#(or(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((1,0),(1,1)) x1 + (1,0) or_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,0) not_A(x1) = x1 and_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,0) precedence: or = not > and > not# partial status: pi(not#) = [1] pi(or) = [] pi(not) = [] pi(and) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(and(x,y)) -> not#(y) p3: not#(and(x,y)) -> not#(not(y)) p4: not#(and(x,y)) -> not#(x) p5: not#(and(x,y)) -> not#(not(x)) p6: not#(and(x,y)) -> not#(not(not(x))) p7: not#(or(x,y)) -> not#(y) p8: not#(or(x,y)) -> not#(not(y)) p9: not#(or(x,y)) -> not#(not(not(y))) p10: not#(or(x,y)) -> not#(x) p11: not#(or(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(or(x,y)) -> not#(not(x)) p3: not#(or(x,y)) -> not#(x) p4: not#(or(x,y)) -> not#(not(not(y))) p5: not#(or(x,y)) -> not#(not(y)) p6: not#(or(x,y)) -> not#(y) p7: not#(and(x,y)) -> not#(not(not(x))) p8: not#(and(x,y)) -> not#(not(x)) p9: not#(and(x,y)) -> not#(x) p10: not#(and(x,y)) -> not#(not(y)) p11: not#(and(x,y)) -> not#(y) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((1,1),(0,0)) x1 + (1,1) or_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(0,0)) x2 + (2,3) not_A(x1) = ((0,1),(1,0)) x1 and_A(x1,x2) = ((0,1),(1,0)) x1 + ((0,0),(1,1)) x2 + (3,2) precedence: not > and > not# = or partial status: pi(not#) = [] pi(or) = [] pi(not) = [] pi(and) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(or(x,y)) -> not#(not(x)) p3: not#(or(x,y)) -> not#(x) p4: not#(or(x,y)) -> not#(not(not(y))) p5: not#(or(x,y)) -> not#(y) p6: not#(and(x,y)) -> not#(not(not(x))) p7: not#(and(x,y)) -> not#(not(x)) p8: not#(and(x,y)) -> not#(x) p9: not#(and(x,y)) -> not#(not(y)) p10: not#(and(x,y)) -> not#(y) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(and(x,y)) -> not#(y) p3: not#(and(x,y)) -> not#(not(y)) p4: not#(and(x,y)) -> not#(x) p5: not#(and(x,y)) -> not#(not(x)) p6: not#(and(x,y)) -> not#(not(not(x))) p7: not#(or(x,y)) -> not#(y) p8: not#(or(x,y)) -> not#(not(not(y))) p9: not#(or(x,y)) -> not#(x) p10: not#(or(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((1,0),(1,0)) x1 + (0,3) or_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (1,2) not_A(x1) = ((1,0),(1,1)) x1 + (0,5) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (1,1) precedence: not > not# = or = and partial status: pi(not#) = [] pi(or) = [] pi(not) = [] pi(and) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(and(x,y)) -> not#(y) p3: not#(and(x,y)) -> not#(x) p4: not#(and(x,y)) -> not#(not(x)) p5: not#(and(x,y)) -> not#(not(not(x))) p6: not#(or(x,y)) -> not#(y) p7: not#(or(x,y)) -> not#(not(not(y))) p8: not#(or(x,y)) -> not#(x) p9: not#(or(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(or(x,y)) -> not#(not(x)) p3: not#(or(x,y)) -> not#(x) p4: not#(or(x,y)) -> not#(not(not(y))) p5: not#(or(x,y)) -> not#(y) p6: not#(and(x,y)) -> not#(not(not(x))) p7: not#(and(x,y)) -> not#(not(x)) p8: not#(and(x,y)) -> not#(x) p9: not#(and(x,y)) -> not#(y) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((1,1),(0,1)) x1 + (1,1) or_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(0,1)) x2 + (2,1) not_A(x1) = x1 and_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(0,1)) x2 + (2,1) precedence: not > not# = and > or partial status: pi(not#) = [1] pi(or) = [1, 2] pi(not) = [] pi(and) = [2] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(or(x,y)) -> not#(not(x)) p3: not#(or(x,y)) -> not#(x) p4: not#(or(x,y)) -> not#(not(not(y))) p5: not#(or(x,y)) -> not#(y) p6: not#(and(x,y)) -> not#(not(not(x))) p7: not#(and(x,y)) -> not#(not(x)) p8: not#(and(x,y)) -> not#(x) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(and(x,y)) -> not#(x) p3: not#(and(x,y)) -> not#(not(x)) p4: not#(and(x,y)) -> not#(not(not(x))) p5: not#(or(x,y)) -> not#(y) p6: not#(or(x,y)) -> not#(not(not(y))) p7: not#(or(x,y)) -> not#(x) p8: not#(or(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((1,0),(1,0)) x1 + (1,2) or_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,1) not_A(x1) = ((1,0),(1,1)) x1 and_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (2,1) precedence: not = and > not# > or partial status: pi(not#) = [] pi(or) = [] pi(not) = [] pi(and) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(and(x,y)) -> not#(not(x)) p3: not#(and(x,y)) -> not#(not(not(x))) p4: not#(or(x,y)) -> not#(y) p5: not#(or(x,y)) -> not#(not(not(y))) p6: not#(or(x,y)) -> not#(x) p7: not#(or(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(or(x,y)) -> not#(not(x)) p3: not#(or(x,y)) -> not#(x) p4: not#(or(x,y)) -> not#(not(not(y))) p5: not#(or(x,y)) -> not#(y) p6: not#(and(x,y)) -> not#(not(not(x))) p7: not#(and(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((1,0),(0,0)) x1 + (1,1) or_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,1) not_A(x1) = ((1,0),(1,1)) x1 and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,1) precedence: not > or = and > not# partial status: pi(not#) = [] pi(or) = [] pi(not) = [] pi(and) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(or(x,y)) -> not#(not(x)) p3: not#(or(x,y)) -> not#(not(not(y))) p4: not#(or(x,y)) -> not#(y) p5: not#(and(x,y)) -> not#(not(not(x))) p6: not#(and(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(and(x,y)) -> not#(not(x)) p3: not#(and(x,y)) -> not#(not(not(x))) p4: not#(or(x,y)) -> not#(y) p5: not#(or(x,y)) -> not#(not(not(y))) p6: not#(or(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((0,1),(0,0)) x1 + (1,2) or_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(0,1)) x2 + (2,3) not_A(x1) = ((0,1),(1,0)) x1 and_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(0,0)) x2 + (3,2) precedence: or = not = and > not# partial status: pi(not#) = [] pi(or) = [] pi(not) = [] pi(and) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(and(x,y)) -> not#(not(x)) p3: not#(and(x,y)) -> not#(not(not(x))) p4: not#(or(x,y)) -> not#(y) p5: not#(or(x,y)) -> not#(not(not(y))) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(or(x,y)) -> not#(not(not(y))) p3: not#(or(x,y)) -> not#(y) p4: not#(and(x,y)) -> not#(not(not(x))) p5: not#(and(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((1,1),(0,0)) x1 + (2,1) or_A(x1,x2) = ((0,0),(1,1)) x1 + ((1,1),(0,0)) x2 + (1,3) not_A(x1) = ((0,1),(1,0)) x1 and_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(1,1)) x2 + (3,1) precedence: not# = not = and > or partial status: pi(not#) = [] pi(or) = [] pi(not) = [] pi(and) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(or(x,y)) -> not#(not(not(y))) p3: not#(and(x,y)) -> not#(not(not(x))) p4: not#(and(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(and(x,y)) -> not#(not(x)) p3: not#(and(x,y)) -> not#(not(not(x))) p4: not#(or(x,y)) -> not#(not(not(y))) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((1,0),(1,0)) x1 + (1,2) or_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (2,2) not_A(x1) = x1 + (0,4) and_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (2,1) precedence: or = not > not# > and partial status: pi(not#) = [] pi(or) = [] pi(not) = [1] pi(and) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(and(x,y)) -> not#(not(x)) p3: not#(or(x,y)) -> not#(not(not(y))) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(or(x,y)) -> not#(not(not(y))) p3: not#(and(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((1,0),(1,0)) x1 + (2,4) or_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (3,1) not_A(x1) = ((0,1),(1,0)) x1 and_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,3) precedence: not# = or = not = and partial status: pi(not#) = [] pi(or) = [] pi(not) = [] pi(and) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(y))) p2: not#(and(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(y))) p2: not#(and(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((1,0),(0,0)) x1 + (2,3) or_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (1,1) not_A(x1) = ((1,0),(1,1)) x1 and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (1,2) precedence: not = and > or > not# partial status: pi(not#) = [] pi(or) = [] pi(not) = [] pi(and) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(and(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(and(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: not#_A(x1) = ((0,1),(0,0)) x1 + (3,2) and_A(x1,x2) = ((0,0),(0,1)) x1 + (2,1) not_A(x1) = ((1,1),(0,1)) x1 + (5,0) or_A(x1,x2) = ((0,0),(0,1)) x1 + (1,1) precedence: not = or > and > not# partial status: pi(not#) = [] pi(and) = [] pi(not) = [] pi(or) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.