YES We show the termination of the TRS R: f(a(),f(f(a(),a()),x)) -> f(f(a(),a()),f(a(),f(a(),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(f(a(),a()),x)) -> f#(f(a(),a()),f(a(),f(a(),x))) p2: f#(a(),f(f(a(),a()),x)) -> f#(a(),f(a(),x)) p3: f#(a(),f(f(a(),a()),x)) -> f#(a(),x) and R consists of: r1: f(a(),f(f(a(),a()),x)) -> f(f(a(),a()),f(a(),f(a(),x))) The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(f(a(),a()),x)) -> f#(a(),f(a(),x)) p2: f#(a(),f(f(a(),a()),x)) -> f#(a(),x) and R consists of: r1: f(a(),f(f(a(),a()),x)) -> f(f(a(),a()),f(a(),f(a(),x))) The set of usable rules consists of r1 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,0),(0,0)) x2 + (1,1) a_A() = (2,0) f_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (0,3) precedence: f > f# > a partial status: pi(f#) = [] pi(a) = [] pi(f) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(f(a(),a()),x)) -> f#(a(),x) and R consists of: r1: f(a(),f(f(a(),a()),x)) -> f(f(a(),a()),f(a(),f(a(),x))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(f(a(),a()),x)) -> f#(a(),x) and R consists of: r1: f(a(),f(f(a(),a()),x)) -> f(f(a(),a()),f(a(),f(a(),x))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((0,1),(1,1)) x2 + (3,2) a_A() = (1,6) f_A(x1,x2) = ((0,0),(1,1)) x2 + (2,1) precedence: f# = f > a partial status: pi(f#) = [] pi(a) = [] pi(f) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.