YES We show the termination of the TRS R: dx(X) -> one() dx(a()) -> zero() dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) dx(neg(ALPHA)) -> neg(dx(ALPHA)) dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(plus(ALPHA,BETA)) -> dx#(ALPHA) p2: dx#(plus(ALPHA,BETA)) -> dx#(BETA) p3: dx#(times(ALPHA,BETA)) -> dx#(ALPHA) p4: dx#(times(ALPHA,BETA)) -> dx#(BETA) p5: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p6: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p7: dx#(neg(ALPHA)) -> dx#(ALPHA) p8: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p9: dx#(div(ALPHA,BETA)) -> dx#(BETA) p10: dx#(ln(ALPHA)) -> dx#(ALPHA) p11: dx#(exp(ALPHA,BETA)) -> dx#(ALPHA) p12: dx#(exp(ALPHA,BETA)) -> dx#(BETA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(plus(ALPHA,BETA)) -> dx#(ALPHA) p2: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p3: dx#(exp(ALPHA,BETA)) -> dx#(ALPHA) p4: dx#(ln(ALPHA)) -> dx#(ALPHA) p5: dx#(div(ALPHA,BETA)) -> dx#(BETA) p6: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p7: dx#(neg(ALPHA)) -> dx#(ALPHA) p8: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p9: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p10: dx#(times(ALPHA,BETA)) -> dx#(BETA) p11: dx#(times(ALPHA,BETA)) -> dx#(ALPHA) p12: dx#(plus(ALPHA,BETA)) -> dx#(BETA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((1,1),(1,1)) x1 + (2,2) plus_A(x1,x2) = x1 + ((1,1),(0,0)) x2 + (1,1) exp_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (1,1) ln_A(x1) = ((1,1),(0,0)) x1 + (1,1) div_A(x1,x2) = ((1,1),(0,0)) x1 + x2 + (1,1) neg_A(x1) = x1 + (0,1) minus_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (1,1) times_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,1)) x2 + (1,1) precedence: neg > minus > ln > dx# = plus = exp = div = times partial status: pi(dx#) = [1] pi(plus) = [1] pi(exp) = [] pi(ln) = [] pi(div) = [2] pi(neg) = [1] pi(minus) = [] pi(times) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(exp(ALPHA,BETA)) -> dx#(ALPHA) p3: dx#(ln(ALPHA)) -> dx#(ALPHA) p4: dx#(div(ALPHA,BETA)) -> dx#(BETA) p5: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p6: dx#(neg(ALPHA)) -> dx#(ALPHA) p7: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p8: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p9: dx#(times(ALPHA,BETA)) -> dx#(BETA) p10: dx#(times(ALPHA,BETA)) -> dx#(ALPHA) p11: dx#(plus(ALPHA,BETA)) -> dx#(BETA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(plus(ALPHA,BETA)) -> dx#(BETA) p3: dx#(times(ALPHA,BETA)) -> dx#(ALPHA) p4: dx#(times(ALPHA,BETA)) -> dx#(BETA) p5: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p6: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p7: dx#(neg(ALPHA)) -> dx#(ALPHA) p8: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p9: dx#(div(ALPHA,BETA)) -> dx#(BETA) p10: dx#(ln(ALPHA)) -> dx#(ALPHA) p11: dx#(exp(ALPHA,BETA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((0,1),(0,0)) x1 + (2,2) exp_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,1) plus_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) times_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(0,1)) x2 + (3,2) minus_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (1,1) neg_A(x1) = ((0,0),(0,1)) x1 + (1,1) div_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (1,1) ln_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: minus > neg > dx# = exp = times > plus > div = ln partial status: pi(dx#) = [] pi(exp) = [] pi(plus) = [] pi(times) = [] pi(minus) = [] pi(neg) = [] pi(div) = [2] pi(ln) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(plus(ALPHA,BETA)) -> dx#(BETA) p3: dx#(times(ALPHA,BETA)) -> dx#(ALPHA) p4: dx#(times(ALPHA,BETA)) -> dx#(BETA) p5: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p6: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p7: dx#(neg(ALPHA)) -> dx#(ALPHA) p8: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p9: dx#(div(ALPHA,BETA)) -> dx#(BETA) p10: dx#(ln(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(ln(ALPHA)) -> dx#(ALPHA) p3: dx#(div(ALPHA,BETA)) -> dx#(BETA) p4: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p5: dx#(neg(ALPHA)) -> dx#(ALPHA) p6: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p7: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p8: dx#(times(ALPHA,BETA)) -> dx#(BETA) p9: dx#(times(ALPHA,BETA)) -> dx#(ALPHA) p10: dx#(plus(ALPHA,BETA)) -> dx#(BETA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((1,1),(1,1)) x1 + (2,2) exp_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) ln_A(x1) = x1 + (3,1) div_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (3,2) neg_A(x1) = ((0,1),(1,0)) x1 + (1,1) minus_A(x1,x2) = x1 + ((1,1),(0,0)) x2 + (1,1) times_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(0,0)) x2 + (1,1) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(1,1)) x2 + (3,1) precedence: dx# = div > ln > exp > neg = minus = times = plus partial status: pi(dx#) = [] pi(exp) = [2] pi(ln) = [1] pi(div) = [] pi(neg) = [] pi(minus) = [] pi(times) = [] pi(plus) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(ln(ALPHA)) -> dx#(ALPHA) p3: dx#(div(ALPHA,BETA)) -> dx#(BETA) p4: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p5: dx#(neg(ALPHA)) -> dx#(ALPHA) p6: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p7: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p8: dx#(times(ALPHA,BETA)) -> dx#(ALPHA) p9: dx#(plus(ALPHA,BETA)) -> dx#(BETA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(plus(ALPHA,BETA)) -> dx#(BETA) p3: dx#(times(ALPHA,BETA)) -> dx#(ALPHA) p4: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p5: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p6: dx#(neg(ALPHA)) -> dx#(ALPHA) p7: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p8: dx#(div(ALPHA,BETA)) -> dx#(BETA) p9: dx#(ln(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((0,1),(0,0)) x1 + (2,2) exp_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,1)) x2 + (3,2) times_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (3,1) minus_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (1,1) neg_A(x1) = ((0,0),(0,1)) x1 + (1,1) div_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,1) ln_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: times > dx# = exp > plus > minus = neg = div = ln partial status: pi(dx#) = [] pi(exp) = [2] pi(plus) = [2] pi(times) = [2] pi(minus) = [2] pi(neg) = [] pi(div) = [] pi(ln) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(plus(ALPHA,BETA)) -> dx#(BETA) p3: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p4: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p5: dx#(neg(ALPHA)) -> dx#(ALPHA) p6: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p7: dx#(div(ALPHA,BETA)) -> dx#(BETA) p8: dx#(ln(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(ln(ALPHA)) -> dx#(ALPHA) p3: dx#(div(ALPHA,BETA)) -> dx#(BETA) p4: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p5: dx#(neg(ALPHA)) -> dx#(ALPHA) p6: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p7: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p8: dx#(plus(ALPHA,BETA)) -> dx#(BETA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((0,1),(0,1)) x1 + (2,2) exp_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(0,1)) x2 + (1,1) ln_A(x1) = ((1,1),(1,1)) x1 + (3,2) div_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (3,2) neg_A(x1) = x1 + (0,1) minus_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,1) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(0,1)) x2 + (0,1) precedence: dx# = ln > div > exp = minus > neg = plus partial status: pi(dx#) = [] pi(exp) = [] pi(ln) = [1] pi(div) = [2] pi(neg) = [1] pi(minus) = [] pi(plus) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(ln(ALPHA)) -> dx#(ALPHA) p3: dx#(div(ALPHA,BETA)) -> dx#(BETA) p4: dx#(neg(ALPHA)) -> dx#(ALPHA) p5: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p6: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p7: dx#(plus(ALPHA,BETA)) -> dx#(BETA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(plus(ALPHA,BETA)) -> dx#(BETA) p3: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p4: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p5: dx#(neg(ALPHA)) -> dx#(ALPHA) p6: dx#(div(ALPHA,BETA)) -> dx#(BETA) p7: dx#(ln(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((0,1),(0,1)) x1 + (2,2) exp_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,1)) x2 + (3,2) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) minus_A(x1,x2) = ((0,0),(1,1)) x1 + x2 + (1,1) neg_A(x1) = ((0,0),(0,1)) x1 + (1,1) div_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(0,1)) x2 + (1,1) ln_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: dx# = exp = plus > minus = neg > div = ln partial status: pi(dx#) = [] pi(exp) = [1] pi(plus) = [2] pi(minus) = [2] pi(neg) = [] pi(div) = [] pi(ln) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(plus(ALPHA,BETA)) -> dx#(BETA) p3: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p4: dx#(neg(ALPHA)) -> dx#(ALPHA) p5: dx#(div(ALPHA,BETA)) -> dx#(BETA) p6: dx#(ln(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(ln(ALPHA)) -> dx#(ALPHA) p3: dx#(div(ALPHA,BETA)) -> dx#(BETA) p4: dx#(neg(ALPHA)) -> dx#(ALPHA) p5: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p6: dx#(plus(ALPHA,BETA)) -> dx#(BETA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((1,1),(0,1)) x1 + (2,2) exp_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) ln_A(x1) = ((1,1),(1,1)) x1 + (3,2) div_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) neg_A(x1) = x1 + (1,1) minus_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,1)) x2 + (3,2) precedence: neg > minus > dx# > div = plus > exp = ln partial status: pi(dx#) = [1] pi(exp) = [2] pi(ln) = [] pi(div) = [2] pi(neg) = [1] pi(minus) = [] pi(plus) = [2] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(ln(ALPHA)) -> dx#(ALPHA) p3: dx#(div(ALPHA,BETA)) -> dx#(BETA) p4: dx#(neg(ALPHA)) -> dx#(ALPHA) p5: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p3: dx#(neg(ALPHA)) -> dx#(ALPHA) p4: dx#(div(ALPHA,BETA)) -> dx#(BETA) p5: dx#(ln(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((1,0),(0,0)) x1 + (2,2) exp_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) minus_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,1) neg_A(x1) = ((1,1),(0,0)) x1 + (1,0) div_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) ln_A(x1) = x1 + (1,1) precedence: minus > exp = neg > div = ln > dx# partial status: pi(dx#) = [] pi(exp) = [2] pi(minus) = [] pi(neg) = [] pi(div) = [1, 2] pi(ln) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p3: dx#(neg(ALPHA)) -> dx#(ALPHA) p4: dx#(ln(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(ln(ALPHA)) -> dx#(ALPHA) p3: dx#(neg(ALPHA)) -> dx#(ALPHA) p4: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((0,1),(0,0)) x1 + (2,2) exp_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,1)) x2 + (3,2) ln_A(x1) = x1 + (1,1) neg_A(x1) = ((0,0),(0,1)) x1 + (1,1) minus_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (3,1) precedence: exp = ln = neg > dx# > minus partial status: pi(dx#) = [] pi(exp) = [2] pi(ln) = [1] pi(neg) = [] pi(minus) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(neg(ALPHA)) -> dx#(ALPHA) p3: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p3: dx#(neg(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((0,1),(0,1)) x1 + (2,2) exp_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (0,1) minus_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) neg_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: minus > dx# = exp = neg partial status: pi(dx#) = [] pi(exp) = [1, 2] pi(minus) = [2] pi(neg) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(neg(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p2: dx#(neg(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((1,0),(0,0)) x1 + (2,2) exp_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) neg_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: dx# = exp = neg partial status: pi(dx#) = [] pi(exp) = [2] pi(neg) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(neg(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(neg(ALPHA)) -> dx#(ALPHA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: dx#_A(x1) = ((1,0),(1,0)) x1 + (2,2) neg_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: dx# = neg partial status: pi(dx#) = [] pi(neg) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.