YES We show the termination of the TRS R: a(a(x)) -> b(b(x)) b(b(a(x))) -> a(b(b(x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: a#(a(x)) -> b#(x) p3: b#(b(a(x))) -> a#(b(b(x))) p4: b#(b(a(x))) -> b#(b(x)) p5: b#(b(a(x))) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: b#(b(a(x))) -> b#(x) p3: b#(b(a(x))) -> b#(b(x)) p4: b#(b(a(x))) -> a#(b(b(x))) p5: a#(a(x)) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The set of usable rules consists of r1, r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = ((0,1),(0,1)) x1 + (3,3) a_A(x1) = ((0,0),(1,1)) x1 + (2,0) b#_A(x1) = ((1,1),(1,1)) x1 + (1,1) b_A(x1) = ((0,0),(1,1)) x1 + (2,0) precedence: a# = b# > a = b partial status: pi(a#) = [] pi(a) = [] pi(b#) = [] pi(b) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: b#(b(a(x))) -> b#(x) p3: b#(b(a(x))) -> a#(b(b(x))) p4: a#(a(x)) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: b#(b(a(x))) -> a#(b(b(x))) p3: a#(a(x)) -> b#(x) p4: b#(b(a(x))) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The set of usable rules consists of r1, r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = ((0,1),(0,0)) x1 + (5,7) a_A(x1) = ((0,1),(0,1)) x1 + (0,4) b#_A(x1) = ((0,1),(0,0)) x1 + (6,7) b_A(x1) = ((0,1),(0,1)) x1 + (1,2) precedence: b# > a# = a = b partial status: pi(a#) = [] pi(a) = [] pi(b#) = [] pi(b) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: b#(b(a(x))) -> a#(b(b(x))) p3: a#(a(x)) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: b#(b(a(x))) -> a#(b(b(x))) p3: a#(a(x)) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The set of usable rules consists of r1, r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = ((0,1),(1,1)) x1 + (1,6) a_A(x1) = ((0,1),(1,1)) x1 + (0,5) b#_A(x1) = ((0,1),(1,1)) x1 + (2,6) b_A(x1) = ((0,1),(1,1)) x1 + (2,3) precedence: a# > b# > a = b partial status: pi(a#) = [] pi(a) = [] pi(b#) = [] pi(b) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: a#(a(x)) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The estimated dependency graph contains the following SCCs: (no SCCs)