YES We show the termination of the TRS R: a(x,y) -> b(x,b(|0|(),c(y))) c(b(y,c(x))) -> c(c(b(a(|0|(),|0|()),y))) b(y,|0|()) -> y -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(x,y) -> b#(x,b(|0|(),c(y))) p2: a#(x,y) -> b#(|0|(),c(y)) p3: a#(x,y) -> c#(y) p4: c#(b(y,c(x))) -> c#(c(b(a(|0|(),|0|()),y))) p5: c#(b(y,c(x))) -> c#(b(a(|0|(),|0|()),y)) p6: c#(b(y,c(x))) -> b#(a(|0|(),|0|()),y) p7: c#(b(y,c(x))) -> a#(|0|(),|0|()) and R consists of: r1: a(x,y) -> b(x,b(|0|(),c(y))) r2: c(b(y,c(x))) -> c(c(b(a(|0|(),|0|()),y))) r3: b(y,|0|()) -> y The estimated dependency graph contains the following SCCs: {p3, p4, p5, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(x,y) -> c#(y) p2: c#(b(y,c(x))) -> a#(|0|(),|0|()) p3: c#(b(y,c(x))) -> c#(b(a(|0|(),|0|()),y)) p4: c#(b(y,c(x))) -> c#(c(b(a(|0|(),|0|()),y))) and R consists of: r1: a(x,y) -> b(x,b(|0|(),c(y))) r2: c(b(y,c(x))) -> c(c(b(a(|0|(),|0|()),y))) r3: b(y,|0|()) -> y The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1,x2) = ((0,1),(0,0)) x2 + (2,1) c#_A(x1) = ((0,1),(0,0)) x1 + (1,1) b_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,0)) x2 + (5,0) c_A(x1) = ((0,1),(0,0)) x1 + (41,39) |0|_A() = (6,2) a_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,1),(0,0)) x2 + (12,11) precedence: a# = c# = b = a > c = |0| partial status: pi(a#) = [] pi(c#) = [] pi(b) = [] pi(c) = [] pi(|0|) = [] pi(a) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(x,y) -> c#(y) p2: c#(b(y,c(x))) -> a#(|0|(),|0|()) p3: c#(b(y,c(x))) -> c#(b(a(|0|(),|0|()),y)) and R consists of: r1: a(x,y) -> b(x,b(|0|(),c(y))) r2: c(b(y,c(x))) -> c(c(b(a(|0|(),|0|()),y))) r3: b(y,|0|()) -> y The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(x,y) -> c#(y) p2: c#(b(y,c(x))) -> c#(b(a(|0|(),|0|()),y)) p3: c#(b(y,c(x))) -> a#(|0|(),|0|()) and R consists of: r1: a(x,y) -> b(x,b(|0|(),c(y))) r2: c(b(y,c(x))) -> c(c(b(a(|0|(),|0|()),y))) r3: b(y,|0|()) -> y The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1,x2) = ((1,0),(0,0)) x2 + (3,18) c#_A(x1) = ((1,0),(0,0)) x1 + (2,18) b_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,0)) x2 + (1,1) c_A(x1) = ((0,0),(1,0)) x1 + (3,17) a_A(x1,x2) = ((1,1),(0,1)) x1 + (5,3) |0|_A() = (4,2) precedence: a# > c# = b = c = a = |0| partial status: pi(a#) = [] pi(c#) = [] pi(b) = [] pi(c) = [] pi(a) = [1] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(b(y,c(x))) -> c#(b(a(|0|(),|0|()),y)) p2: c#(b(y,c(x))) -> a#(|0|(),|0|()) and R consists of: r1: a(x,y) -> b(x,b(|0|(),c(y))) r2: c(b(y,c(x))) -> c(c(b(a(|0|(),|0|()),y))) r3: b(y,|0|()) -> y The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(b(y,c(x))) -> c#(b(a(|0|(),|0|()),y)) and R consists of: r1: a(x,y) -> b(x,b(|0|(),c(y))) r2: c(b(y,c(x))) -> c(c(b(a(|0|(),|0|()),y))) r3: b(y,|0|()) -> y The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1) = ((0,1),(0,0)) x1 + (1,17) b_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,0)) x2 + (1,0) c_A(x1) = ((0,1),(0,0)) x1 + (16,2) a_A(x1,x2) = ((1,0),(1,1)) x1 + (4,3) |0|_A() = (2,3) precedence: c = a > c# = b = |0| partial status: pi(c#) = [] pi(b) = [] pi(c) = [] pi(a) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.