YES We show the termination of the TRS R: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) p3: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p4: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) p5: f#(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f#(x5,x5,x5,x5,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f#(x5,x5,x5,x5,x5) p3: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) p4: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p5: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2,x3,x4,x5) = ((1,1),(0,0)) x4 + ((1,1),(1,1)) x5 + (2,2) s_A(x1) = ((1,1),(1,1)) x1 + (1,1) |0|_A() = (1,1) precedence: f# = |0| > s partial status: pi(f#) = [5] pi(s) = [] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) p3: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p4: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) p3: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p4: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2,x3,x4,x5) = ((0,1),(0,0)) x3 + ((1,1),(1,1)) x4 + x5 + (2,2) s_A(x1) = ((1,1),(1,1)) x1 + (1,1) |0|_A() = (1,1) precedence: f# = s > |0| partial status: pi(f#) = [] pi(s) = [1] pi(|0|) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) p3: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) p3: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2,x3,x4,x5) = ((0,1),(0,0)) x2 + x4 + (1,2) s_A(x1) = ((1,1),(1,1)) x1 + (2,2) |0|_A() = (0,1) precedence: f# = s = |0| partial status: pi(f#) = [4] pi(s) = [1] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2,x3,x4,x5) = ((1,1),(1,1)) x2 + (2,2) s_A(x1) = ((1,1),(1,1)) x1 + (3,2) |0|_A() = (1,1) precedence: f# = s = |0| partial status: pi(f#) = [] pi(s) = [1] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2,x3,x4,x5) = ((0,1),(0,1)) x1 + x3 + x4 + x5 + (2,2) s_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: f# = s partial status: pi(f#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.