YES We show the termination of the TRS R: active(from(X)) -> mark(cons(X,from(s(X)))) active(length(nil())) -> mark(|0|()) active(length(cons(X,Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil()) -> active(nil()) mark(|0|()) -> active(|0|()) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(from(X)) -> mark#(cons(X,from(s(X)))) p2: active#(from(X)) -> cons#(X,from(s(X))) p3: active#(from(X)) -> from#(s(X)) p4: active#(from(X)) -> s#(X) p5: active#(length(nil())) -> mark#(|0|()) p6: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p7: active#(length(cons(X,Y))) -> s#(length1(Y)) p8: active#(length(cons(X,Y))) -> length1#(Y) p9: active#(length1(X)) -> mark#(length(X)) p10: active#(length1(X)) -> length#(X) p11: mark#(from(X)) -> active#(from(mark(X))) p12: mark#(from(X)) -> from#(mark(X)) p13: mark#(from(X)) -> mark#(X) p14: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p15: mark#(cons(X1,X2)) -> cons#(mark(X1),X2) p16: mark#(cons(X1,X2)) -> mark#(X1) p17: mark#(s(X)) -> active#(s(mark(X))) p18: mark#(s(X)) -> s#(mark(X)) p19: mark#(s(X)) -> mark#(X) p20: mark#(length(X)) -> active#(length(X)) p21: mark#(nil()) -> active#(nil()) p22: mark#(|0|()) -> active#(|0|()) p23: mark#(length1(X)) -> active#(length1(X)) p24: from#(mark(X)) -> from#(X) p25: from#(active(X)) -> from#(X) p26: cons#(mark(X1),X2) -> cons#(X1,X2) p27: cons#(X1,mark(X2)) -> cons#(X1,X2) p28: cons#(active(X1),X2) -> cons#(X1,X2) p29: cons#(X1,active(X2)) -> cons#(X1,X2) p30: s#(mark(X)) -> s#(X) p31: s#(active(X)) -> s#(X) p32: length#(mark(X)) -> length#(X) p33: length#(active(X)) -> length#(X) p34: length1#(mark(X)) -> length1#(X) p35: length1#(active(X)) -> length1#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p6, p9, p11, p13, p14, p16, p17, p19, p20, p23} {p26, p27, p28, p29} {p24, p25} {p30, p31} {p34, p35} {p32, p33} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(from(X)) -> mark#(cons(X,from(s(X)))) p2: mark#(length1(X)) -> active#(length1(X)) p3: active#(length1(X)) -> mark#(length(X)) p4: mark#(length(X)) -> active#(length(X)) p5: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p6: mark#(s(X)) -> mark#(X) p7: mark#(s(X)) -> active#(s(mark(X))) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: mark#(from(X)) -> mark#(X) p11: mark#(from(X)) -> active#(from(mark(X))) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((1,1),(0,0)) x1 + (1,7) from_A(x1) = ((0,0),(0,1)) x1 + (0,6) mark#_A(x1) = ((0,1),(0,0)) x1 + (5,7) cons_A(x1,x2) = ((0,0),(0,1)) x1 + (3,1) s_A(x1) = ((0,0),(0,1)) x1 + (2,0) length1_A(x1) = (4,6) length_A(x1) = (4,6) mark_A(x1) = ((0,0),(0,1)) x1 + (1,0) active_A(x1) = ((0,0),(0,1)) x1 + (1,0) nil_A() = (0,1) |0|_A() = (5,2) precedence: from > nil > active# = mark# = cons = s = length1 = length = mark = active = |0| partial status: pi(active#) = [] pi(from) = [] pi(mark#) = [] pi(cons) = [] pi(s) = [] pi(length1) = [] pi(length) = [] pi(mark) = [] pi(active) = [] pi(nil) = [] pi(|0|) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(from(X)) -> mark#(cons(X,from(s(X)))) p2: mark#(length1(X)) -> active#(length1(X)) p3: active#(length1(X)) -> mark#(length(X)) p4: mark#(length(X)) -> active#(length(X)) p5: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p6: mark#(s(X)) -> mark#(X) p7: mark#(s(X)) -> active#(s(mark(X))) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: mark#(from(X)) -> active#(from(mark(X))) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(from(X)) -> mark#(cons(X,from(s(X)))) p2: mark#(from(X)) -> active#(from(mark(X))) p3: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p4: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p5: active#(length1(X)) -> mark#(length(X)) p6: mark#(cons(X1,X2)) -> mark#(X1) p7: mark#(s(X)) -> active#(s(mark(X))) p8: mark#(s(X)) -> mark#(X) p9: mark#(length(X)) -> active#(length(X)) p10: mark#(length1(X)) -> active#(length1(X)) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((0,1),(1,0)) x1 + (2,1) from_A(x1) = ((1,1),(1,1)) x1 + (3,2) mark#_A(x1) = ((1,0),(1,0)) x1 + (2,1) cons_A(x1,x2) = ((1,1),(0,0)) x1 s_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((0,1),(1,0)) x1 length_A(x1) = (0,0) length1_A(x1) = (0,0) active_A(x1) = ((0,1),(1,0)) x1 nil_A() = (1,0) |0|_A() = (0,0) precedence: nil > length1 > |0| > length > active# = mark# > from > cons > s = mark = active partial status: pi(active#) = [] pi(from) = [] pi(mark#) = [] pi(cons) = [] pi(s) = [] pi(mark) = [] pi(length) = [] pi(length1) = [] pi(active) = [] pi(nil) = [] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(from(X)) -> mark#(cons(X,from(s(X)))) p2: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p3: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p4: active#(length1(X)) -> mark#(length(X)) p5: mark#(cons(X1,X2)) -> mark#(X1) p6: mark#(s(X)) -> active#(s(mark(X))) p7: mark#(s(X)) -> mark#(X) p8: mark#(length(X)) -> active#(length(X)) p9: mark#(length1(X)) -> active#(length1(X)) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(from(X)) -> mark#(cons(X,from(s(X)))) p2: mark#(length1(X)) -> active#(length1(X)) p3: active#(length1(X)) -> mark#(length(X)) p4: mark#(length(X)) -> active#(length(X)) p5: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p6: mark#(s(X)) -> mark#(X) p7: mark#(s(X)) -> active#(s(mark(X))) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((0,1),(0,1)) x1 from_A(x1) = (0,3) mark#_A(x1) = (0,0) cons_A(x1,x2) = (1,0) s_A(x1) = (2,0) length1_A(x1) = ((1,0),(0,0)) x1 + (17,0) length_A(x1) = ((1,0),(0,0)) x1 + (7,0) mark_A(x1) = ((1,1),(0,0)) x1 + (9,4) active_A(x1) = ((1,1),(0,0)) x1 + (8,4) nil_A() = (0,1) |0|_A() = (0,5) precedence: from = cons = length1 = length = mark = active > nil > |0| > active# = mark# = s partial status: pi(active#) = [] pi(from) = [] pi(mark#) = [] pi(cons) = [] pi(s) = [] pi(length1) = [] pi(length) = [] pi(mark) = [] pi(active) = [] pi(nil) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length1(X)) -> active#(length1(X)) p2: active#(length1(X)) -> mark#(length(X)) p3: mark#(length(X)) -> active#(length(X)) p4: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p5: mark#(s(X)) -> mark#(X) p6: mark#(s(X)) -> active#(s(mark(X))) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length1(X)) -> active#(length1(X)) p2: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p3: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p4: active#(length1(X)) -> mark#(length(X)) p5: mark#(cons(X1,X2)) -> mark#(X1) p6: mark#(s(X)) -> active#(s(mark(X))) p7: mark#(s(X)) -> mark#(X) p8: mark#(length(X)) -> active#(length(X)) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 + (0,1) length1_A(x1) = (0,1) active#_A(x1) = (0,1) length_A(x1) = (0,1) cons_A(x1,x2) = ((1,0),(0,0)) x1 + ((0,0),(0,1)) x2 + (1,0) s_A(x1) = ((1,0),(0,0)) x1 + (0,1) mark_A(x1) = x1 active_A(x1) = x1 from_A(x1) = ((1,0),(1,0)) x1 + (2,1) nil_A() = (1,1) |0|_A() = (0,1) precedence: length = s = |0| > mark# = length1 = active# > nil > cons = mark = active = from partial status: pi(mark#) = [] pi(length1) = [] pi(active#) = [] pi(length) = [] pi(cons) = [] pi(s) = [] pi(mark) = [] pi(active) = [] pi(from) = [] pi(nil) = [] pi(|0|) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length1(X)) -> active#(length1(X)) p2: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p3: active#(length1(X)) -> mark#(length(X)) p4: mark#(cons(X1,X2)) -> mark#(X1) p5: mark#(s(X)) -> active#(s(mark(X))) p6: mark#(s(X)) -> mark#(X) p7: mark#(length(X)) -> active#(length(X)) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length1(X)) -> active#(length1(X)) p2: active#(length1(X)) -> mark#(length(X)) p3: mark#(length(X)) -> active#(length(X)) p4: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p5: mark#(s(X)) -> mark#(X) p6: mark#(s(X)) -> active#(s(mark(X))) p7: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = (9,8) length1_A(x1) = (0,8) active#_A(x1) = ((0,1),(0,0)) x1 + (1,8) length_A(x1) = ((0,1),(0,0)) x1 + (10,8) cons_A(x1,x2) = (13,2) s_A(x1) = ((0,1),(0,0)) x1 + (6,7) mark_A(x1) = ((0,0),(0,1)) x1 + (15,2) active_A(x1) = ((0,0),(0,1)) x1 + (15,2) from_A(x1) = ((0,1),(0,0)) x1 + (16,4) nil_A() = (17,7) |0|_A() = (16,7) precedence: cons > length1 > mark# = active# = length = mark = active = from > s > |0| > nil partial status: pi(mark#) = [] pi(length1) = [] pi(active#) = [] pi(length) = [] pi(cons) = [] pi(s) = [] pi(mark) = [] pi(active) = [] pi(from) = [] pi(nil) = [] pi(|0|) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length1(X)) -> active#(length1(X)) p2: active#(length1(X)) -> mark#(length(X)) p3: mark#(length(X)) -> active#(length(X)) p4: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p5: mark#(s(X)) -> mark#(X) p6: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length1(X)) -> active#(length1(X)) p2: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(s(X)) -> mark#(X) p5: mark#(length(X)) -> active#(length(X)) p6: active#(length1(X)) -> mark#(length(X)) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (6,8) length1_A(x1) = ((1,1),(1,1)) x1 + (13,8) active#_A(x1) = ((0,1),(0,0)) x1 + (1,8) length_A(x1) = ((0,1),(1,0)) x1 + (2,2) cons_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (17,10) s_A(x1) = ((0,1),(0,1)) x1 + (0,2) mark_A(x1) = ((1,1),(0,1)) x1 + (1,0) active_A(x1) = ((1,1),(1,1)) x1 + (0,1) precedence: cons = active > length > mark# = length1 = active# > mark > s partial status: pi(mark#) = [] pi(length1) = [] pi(active#) = [] pi(length) = [] pi(cons) = [] pi(s) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length1(X)) -> active#(length1(X)) p2: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p3: mark#(s(X)) -> mark#(X) p4: mark#(length(X)) -> active#(length(X)) p5: active#(length1(X)) -> mark#(length(X)) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length1(X)) -> active#(length1(X)) p2: active#(length1(X)) -> mark#(length(X)) p3: mark#(length(X)) -> active#(length(X)) p4: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p5: mark#(s(X)) -> mark#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(0,0)) x1 + (0,1) length1_A(x1) = ((1,1),(0,1)) x1 + (0,2) active#_A(x1) = ((1,0),(0,0)) x1 + (1,1) length_A(x1) = ((1,1),(0,0)) x1 + (0,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,1)) x2 + (0,5) s_A(x1) = ((1,1),(0,0)) x1 + (1,1) mark_A(x1) = ((1,1),(1,1)) x1 + (2,2) active_A(x1) = ((1,1),(1,1)) x1 + (0,1) precedence: length > mark# = active# > length1 = s = mark > active > cons partial status: pi(mark#) = [] pi(length1) = [] pi(active#) = [] pi(length) = [] pi(cons) = [] pi(s) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(length1(X)) -> mark#(length(X)) p2: mark#(length(X)) -> active#(length(X)) p3: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) p4: mark#(s(X)) -> mark#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(length1(X)) -> mark#(length(X)) p2: mark#(s(X)) -> mark#(X) p3: mark#(length(X)) -> active#(length(X)) p4: active#(length(cons(X,Y))) -> mark#(s(length1(Y))) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of r18, r19, r20, r21, r22, r23 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = x1 + (1,0) length1_A(x1) = ((1,1),(0,1)) x1 + (9,5) mark#_A(x1) = ((0,1),(0,1)) x1 + (1,1) length_A(x1) = ((0,1),(0,1)) x1 + (3,4) s_A(x1) = ((0,0),(0,1)) x1 + (11,0) cons_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(0,1)) x2 + (12,4) mark_A(x1) = ((1,1),(1,1)) x1 + (1,0) active_A(x1) = ((1,1),(0,1)) x1 + (10,5) precedence: length1 = mark# = length = active > active# > s = mark > cons partial status: pi(active#) = [1] pi(length1) = [] pi(mark#) = [] pi(length) = [] pi(s) = [] pi(cons) = [] pi(mark) = [1] pi(active) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(length1(X)) -> mark#(length(X)) p2: mark#(s(X)) -> mark#(X) p3: mark#(length(X)) -> active#(length(X)) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(length1(X)) -> mark#(length(X)) p2: mark#(length(X)) -> active#(length(X)) p3: mark#(s(X)) -> mark#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of r20, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = x1 + (1,1) length1_A(x1) = ((1,1),(1,1)) x1 + (4,2) mark#_A(x1) = (3,2) length_A(x1) = (1,0) s_A(x1) = (1,1) mark_A(x1) = x1 + (2,1) active_A(x1) = ((0,0),(0,1)) x1 + (2,1) precedence: mark# > active# = length1 > s = active > length = mark partial status: pi(active#) = [1] pi(length1) = [] pi(mark#) = [] pi(length) = [] pi(s) = [] pi(mark) = [1] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(X)) p2: mark#(s(X)) -> mark#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (2,2) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: mark# = s partial status: pi(mark#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: cons#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (2,2) mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) precedence: cons# = mark = active partial status: pi(cons#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,active(X2)) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) p3: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,active(X2)) -> cons#(X1,X2) p2: cons#(X1,mark(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: cons#_A(x1,x2) = ((1,1),(1,1)) x1 + (2,2) active_A(x1) = ((1,1),(1,1)) x1 + (3,2) mark_A(x1) = (1,1) precedence: cons# > active = mark partial status: pi(cons#) = [] pi(active) = [] pi(mark) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,active(X2)) -> cons#(X1,X2) p2: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,active(X2)) -> cons#(X1,X2) p2: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: cons#_A(x1,x2) = x1 + x2 + (2,2) active_A(x1) = x1 + (1,0) mark_A(x1) = x1 + (1,1) precedence: cons# = active = mark partial status: pi(cons#) = [2] pi(active) = [1] pi(mark) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: cons#_A(x1,x2) = x1 + ((0,1),(0,0)) x2 + (2,2) mark_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: cons# = mark partial status: pi(cons#) = [] pi(mark) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(mark(X)) -> from#(X) p2: from#(active(X)) -> from#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: from#_A(x1) = ((0,1),(0,0)) x1 + (2,2) mark_A(x1) = ((0,0),(0,1)) x1 + (1,1) active_A(x1) = ((0,1),(0,1)) x1 + (1,1) precedence: from# = mark = active partial status: pi(from#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: from#(active(X)) -> from#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(active(X)) -> from#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: from#_A(x1) = ((1,0),(1,0)) x1 + (2,2) active_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: from# = active partial status: pi(from#) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: s#_A(x1) = ((0,1),(0,0)) x1 + (2,2) mark_A(x1) = ((0,0),(0,1)) x1 + (1,1) active_A(x1) = ((0,1),(0,1)) x1 + (1,1) precedence: s# = mark = active partial status: pi(s#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: s#_A(x1) = ((1,0),(1,0)) x1 + (2,2) active_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: s# = active partial status: pi(s#) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: length1#(mark(X)) -> length1#(X) p2: length1#(active(X)) -> length1#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: length1#_A(x1) = ((0,1),(0,0)) x1 + (2,2) mark_A(x1) = ((0,0),(0,1)) x1 + (1,1) active_A(x1) = ((0,1),(0,1)) x1 + (1,1) precedence: length1# = mark = active partial status: pi(length1#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: length1#(active(X)) -> length1#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: length1#(active(X)) -> length1#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: length1#_A(x1) = ((1,0),(1,0)) x1 + (2,2) active_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: length1# = active partial status: pi(length1#) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: length#(mark(X)) -> length#(X) p2: length#(active(X)) -> length#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: length#_A(x1) = ((0,1),(0,0)) x1 + (2,2) mark_A(x1) = ((0,0),(0,1)) x1 + (1,1) active_A(x1) = ((0,1),(0,1)) x1 + (1,1) precedence: length# = mark = active partial status: pi(length#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: length#(active(X)) -> length#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: length#(active(X)) -> length#(X) and R consists of: r1: active(from(X)) -> mark(cons(X,from(s(X)))) r2: active(length(nil())) -> mark(|0|()) r3: active(length(cons(X,Y))) -> mark(s(length1(Y))) r4: active(length1(X)) -> mark(length(X)) r5: mark(from(X)) -> active(from(mark(X))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(s(X)) -> active(s(mark(X))) r8: mark(length(X)) -> active(length(X)) r9: mark(nil()) -> active(nil()) r10: mark(|0|()) -> active(|0|()) r11: mark(length1(X)) -> active(length1(X)) r12: from(mark(X)) -> from(X) r13: from(active(X)) -> from(X) r14: cons(mark(X1),X2) -> cons(X1,X2) r15: cons(X1,mark(X2)) -> cons(X1,X2) r16: cons(active(X1),X2) -> cons(X1,X2) r17: cons(X1,active(X2)) -> cons(X1,X2) r18: s(mark(X)) -> s(X) r19: s(active(X)) -> s(X) r20: length(mark(X)) -> length(X) r21: length(active(X)) -> length(X) r22: length1(mark(X)) -> length1(X) r23: length1(active(X)) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: length#_A(x1) = ((1,0),(1,0)) x1 + (2,2) active_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: length# = active partial status: pi(length#) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.