YES We show the termination of the TRS R: active(g(X)) -> mark(h(X)) active(c()) -> mark(d()) active(h(d())) -> mark(g(c())) proper(g(X)) -> g(proper(X)) proper(h(X)) -> h(proper(X)) proper(c()) -> ok(c()) proper(d()) -> ok(d()) g(ok(X)) -> ok(g(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(g(X)) -> h#(X) p2: active#(h(d())) -> g#(c()) p3: proper#(g(X)) -> g#(proper(X)) p4: proper#(g(X)) -> proper#(X) p5: proper#(h(X)) -> h#(proper(X)) p6: proper#(h(X)) -> proper#(X) p7: g#(ok(X)) -> g#(X) p8: h#(ok(X)) -> h#(X) p9: top#(mark(X)) -> top#(proper(X)) p10: top#(mark(X)) -> proper#(X) p11: top#(ok(X)) -> top#(active(X)) p12: top#(ok(X)) -> active#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p9, p11} {p4, p6} {p8} {p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,1),(1,1)) x1 + (2,0) ok_A(x1) = x1 + (9,0) active_A(x1) = ((1,1),(0,0)) x1 + (0,6) mark_A(x1) = x1 + (12,0) proper_A(x1) = x1 + (10,1) g_A(x1) = ((1,0),(0,0)) x1 + (21,0) h_A(x1) = ((1,0),(0,0)) x1 + (8,6) c_A() = (0,33) d_A() = (20,6) precedence: c > top# > active = mark = proper = g = h > d > ok partial status: pi(top#) = [] pi(ok) = [] pi(active) = [] pi(mark) = [] pi(proper) = [1] pi(g) = [] pi(h) = [] pi(c) = [] pi(d) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r9 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = x1 ok_A(x1) = ((0,1),(0,0)) x1 + (1,3) active_A(x1) = ((0,1),(0,0)) x1 + (0,3) h_A(x1) = (5,3) g_A(x1) = ((0,1),(0,0)) x1 + (0,2) mark_A(x1) = (1,3) c_A() = (6,6) d_A() = (7,7) precedence: h = g > top# = ok > d > active = mark = c partial status: pi(top#) = [1] pi(ok) = [] pi(active) = [] pi(h) = [] pi(g) = [] pi(mark) = [] pi(c) = [] pi(d) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(h(X)) -> proper#(X) p2: proper#(g(X)) -> proper#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((0,1),(0,0)) x1 + (2,2) h_A(x1) = ((0,0),(0,1)) x1 + (1,1) g_A(x1) = ((0,1),(0,1)) x1 + (1,1) precedence: proper# = h = g partial status: pi(proper#) = [] pi(h) = [] pi(g) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: proper#(g(X)) -> proper#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(g(X)) -> proper#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,0),(1,0)) x1 + (2,2) g_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: proper# = g partial status: pi(proper#) = [] pi(g) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(ok(X)) -> h#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: h#_A(x1) = ((1,0),(1,0)) x1 + (2,2) ok_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: h# = ok partial status: pi(h#) = [] pi(ok) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(ok(X)) -> g#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((1,0),(1,0)) x1 + (2,2) ok_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: g# = ok partial status: pi(g#) = [] pi(ok) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.