YES We show the termination of the TRS R: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) a__sqr(|0|()) -> |0|() a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) a__dbl(|0|()) -> |0|() a__dbl(s(X)) -> s(s(dbl(X))) a__add(|0|(),X) -> mark(X) a__add(s(X),Y) -> s(add(X,Y)) a__first(|0|(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(X) mark(|0|()) -> |0|() mark(nil()) -> nil() a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1,X2) -> add(X1,X2) a__dbl(X) -> dbl(X) a__first(X1,X2) -> first(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__terms#(N) -> a__sqr#(mark(N)) p2: a__terms#(N) -> mark#(N) p3: a__add#(|0|(),X) -> mark#(X) p4: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p5: mark#(terms(X)) -> a__terms#(mark(X)) p6: mark#(terms(X)) -> mark#(X) p7: mark#(sqr(X)) -> a__sqr#(mark(X)) p8: mark#(sqr(X)) -> mark#(X) p9: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> mark#(X2) p12: mark#(dbl(X)) -> a__dbl#(mark(X)) p13: mark#(dbl(X)) -> mark#(X) p14: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p15: mark#(first(X1,X2)) -> mark#(X1) p16: mark#(first(X1,X2)) -> mark#(X2) p17: mark#(cons(X1,X2)) -> mark#(X1) p18: mark#(recip(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p8, p9, p10, p11, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__terms#(N) -> mark#(N) p2: mark#(recip(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(first(X1,X2)) -> mark#(X2) p5: mark#(first(X1,X2)) -> mark#(X1) p6: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p7: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p8: mark#(dbl(X)) -> mark#(X) p9: mark#(add(X1,X2)) -> mark#(X2) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p12: a__add#(|0|(),X) -> mark#(X) p13: mark#(sqr(X)) -> mark#(X) p14: mark#(terms(X)) -> mark#(X) p15: mark#(terms(X)) -> a__terms#(mark(X)) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__terms#_A(x1) = ((1,1),(1,1)) x1 + (2,96) mark#_A(x1) = ((1,1),(1,1)) x1 + (1,15) recip_A(x1) = ((0,1),(1,0)) x1 + (2,15) cons_A(x1,x2) = x1 + (37,14) first_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (38,35) a__first#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,0) mark_A(x1) = ((1,1),(1,1)) x1 + (3,15) s_A(x1) = (39,28) dbl_A(x1) = ((0,1),(1,0)) x1 + (2,23) add_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (40,33) a__add#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (7,15) |0|_A() = (4,1) sqr_A(x1) = x1 + (2,28) terms_A(x1) = ((1,1),(1,1)) x1 + (17,82) a__terms_A(x1) = ((1,1),(1,1)) x1 + (83,82) a__sqr_A(x1) = x1 + (29,28) a__dbl_A(x1) = ((0,1),(1,0)) x1 + (12,23) a__add_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (41,33) a__first_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (39,35) nil_A() = (1,0) precedence: first > a__first > mark = dbl = a__terms = a__sqr = a__add = nil > cons > sqr = terms > a__terms# > recip > a__dbl > mark# = a__first# = s = add = a__add# = |0| partial status: pi(a__terms#) = [] pi(mark#) = [] pi(recip) = [] pi(cons) = [1] pi(first) = [] pi(a__first#) = [] pi(mark) = [] pi(s) = [] pi(dbl) = [] pi(add) = [] pi(a__add#) = [] pi(|0|) = [] pi(sqr) = [] pi(terms) = [] pi(a__terms) = [] pi(a__sqr) = [] pi(a__dbl) = [] pi(a__add) = [] pi(a__first) = [] pi(nil) = [] The next rules are strictly ordered: p15 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__terms#(N) -> mark#(N) p2: mark#(recip(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(first(X1,X2)) -> mark#(X2) p5: mark#(first(X1,X2)) -> mark#(X1) p6: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p7: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p8: mark#(dbl(X)) -> mark#(X) p9: mark#(add(X1,X2)) -> mark#(X2) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p12: a__add#(|0|(),X) -> mark#(X) p13: mark#(sqr(X)) -> mark#(X) p14: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p5: a__add#(|0|(),X) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> mark#(X2) p8: mark#(dbl(X)) -> mark#(X) p9: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p10: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p11: mark#(first(X1,X2)) -> mark#(X1) p12: mark#(first(X1,X2)) -> mark#(X2) p13: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 + (2,2) recip_A(x1) = x1 + (1,1) terms_A(x1) = ((0,1),(1,0)) x1 + (5,5) sqr_A(x1) = ((0,1),(1,0)) x1 + (3,3) add_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,3) a__add#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (2,2) mark_A(x1) = ((0,1),(1,0)) x1 |0|_A() = (1,1) dbl_A(x1) = ((1,1),(1,1)) x1 + (3,3) first_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,3) a__first#_A(x1,x2) = ((1,1),(1,1)) x2 + (2,0) s_A(x1) = (0,0) cons_A(x1,x2) = ((0,1),(1,0)) x1 + (1,1) a__terms_A(x1) = ((0,1),(1,0)) x1 + (5,5) a__sqr_A(x1) = ((0,1),(1,0)) x1 + (3,3) a__dbl_A(x1) = ((1,1),(1,1)) x1 + (3,3) a__add_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,3) a__first_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,3) nil_A() = (0,0) precedence: sqr = mark = s = a__sqr = a__add > a__terms > cons = a__first = nil > add > dbl = a__dbl > mark# = a__add# = a__first# > recip = terms = first > |0| partial status: pi(mark#) = [1] pi(recip) = [1] pi(terms) = [] pi(sqr) = [] pi(add) = [] pi(a__add#) = [2] pi(mark) = [] pi(|0|) = [] pi(dbl) = [] pi(first) = [1] pi(a__first#) = [] pi(s) = [] pi(cons) = [] pi(a__terms) = [] pi(a__sqr) = [] pi(a__dbl) = [] pi(a__add) = [] pi(a__first) = [] pi(nil) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p5: a__add#(|0|(),X) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> mark#(X2) p8: mark#(dbl(X)) -> mark#(X) p9: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p10: mark#(first(X1,X2)) -> mark#(X1) p11: mark#(first(X1,X2)) -> mark#(X2) p12: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> mark#(X2) p4: mark#(first(X1,X2)) -> mark#(X1) p5: mark#(dbl(X)) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X2) p7: mark#(add(X1,X2)) -> mark#(X1) p8: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p9: a__add#(|0|(),X) -> mark#(X) p10: mark#(sqr(X)) -> mark#(X) p11: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 + (2,2) recip_A(x1) = x1 + (0,1) cons_A(x1,x2) = x1 + (0,4) first_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(1,1)) x2 + (0,4) dbl_A(x1) = ((0,1),(1,0)) x1 + (0,7) add_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(1,1)) x2 + (0,4) a__add#_A(x1,x2) = ((1,1),(1,1)) x2 + (3,2) mark_A(x1) = ((1,1),(1,1)) x1 + (0,2) |0|_A() = (1,2) sqr_A(x1) = ((0,1),(1,0)) x1 + (0,3) terms_A(x1) = ((1,1),(1,1)) x1 + (0,9) a__terms_A(x1) = ((1,1),(1,1)) x1 + (7,9) a__sqr_A(x1) = ((0,1),(1,0)) x1 + (1,4) s_A(x1) = (2,6) a__dbl_A(x1) = ((0,1),(1,0)) x1 + (1,8) a__add_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(1,1)) x2 + (0,4) a__first_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(1,1)) x2 + (0,4) nil_A() = (0,0) precedence: mark# = a__add# > cons = first = dbl = add = mark = terms = a__terms = a__dbl = a__add = a__first = nil > recip > sqr = a__sqr = s > |0| partial status: pi(mark#) = [] pi(recip) = [] pi(cons) = [] pi(first) = [] pi(dbl) = [] pi(add) = [2] pi(a__add#) = [] pi(mark) = [1] pi(|0|) = [] pi(sqr) = [] pi(terms) = [] pi(a__terms) = [] pi(a__sqr) = [] pi(s) = [] pi(a__dbl) = [] pi(a__add) = [2] pi(a__first) = [] pi(nil) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> mark#(X2) p4: mark#(dbl(X)) -> mark#(X) p5: mark#(add(X1,X2)) -> mark#(X2) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p8: a__add#(|0|(),X) -> mark#(X) p9: mark#(sqr(X)) -> mark#(X) p10: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p5: a__add#(|0|(),X) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> mark#(X2) p8: mark#(dbl(X)) -> mark#(X) p9: mark#(first(X1,X2)) -> mark#(X2) p10: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 recip_A(x1) = x1 terms_A(x1) = ((0,1),(0,1)) x1 + (1,8) sqr_A(x1) = ((0,0),(0,1)) x1 + (2,0) add_A(x1,x2) = x1 + ((0,1),(0,1)) x2 + (2,8) a__add#_A(x1,x2) = ((0,1),(0,0)) x2 mark_A(x1) = ((0,1),(0,1)) x1 + (4,0) |0|_A() = (0,0) dbl_A(x1) = x1 + (8,8) first_A(x1,x2) = ((0,0),(0,1)) x2 + (0,7) cons_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,0),(1,0)) x2 a__terms_A(x1) = ((0,1),(0,1)) x1 + (9,8) a__sqr_A(x1) = ((0,1),(0,1)) x1 + (3,0) s_A(x1) = (1,7) a__dbl_A(x1) = x1 + (8,8) a__add_A(x1,x2) = x1 + ((0,1),(0,1)) x2 + (5,8) a__first_A(x1,x2) = x2 + (6,7) nil_A() = (5,1) precedence: terms = sqr = add = mark = a__terms = a__sqr = s = a__dbl = a__add > mark# = a__add# > recip > |0| > first = a__first > cons = nil > dbl partial status: pi(mark#) = [] pi(recip) = [] pi(terms) = [] pi(sqr) = [] pi(add) = [] pi(a__add#) = [] pi(mark) = [] pi(|0|) = [] pi(dbl) = [] pi(first) = [] pi(cons) = [] pi(a__terms) = [] pi(a__sqr) = [] pi(s) = [] pi(a__dbl) = [] pi(a__add) = [] pi(a__first) = [] pi(nil) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p5: a__add#(|0|(),X) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(dbl(X)) -> mark#(X) p8: mark#(first(X1,X2)) -> mark#(X2) p9: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(first(X1,X2)) -> mark#(X2) p4: mark#(dbl(X)) -> mark#(X) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p7: a__add#(|0|(),X) -> mark#(X) p8: mark#(sqr(X)) -> mark#(X) p9: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,1)) x1 + (2,5) recip_A(x1) = ((0,0),(0,1)) x1 + (1,5) cons_A(x1,x2) = x1 + (3,4) first_A(x1,x2) = ((0,0),(0,1)) x2 + (19,6) dbl_A(x1) = ((0,0),(0,1)) x1 + (1,5) add_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (3,0) a__add#_A(x1,x2) = ((0,1),(0,1)) x2 + (2,5) mark_A(x1) = ((0,1),(0,1)) x1 + (13,0) |0|_A() = (3,5) sqr_A(x1) = ((0,0),(0,1)) x1 + (1,3) terms_A(x1) = ((0,0),(0,1)) x1 + (1,12) a__terms_A(x1) = x1 + (12,12) a__sqr_A(x1) = ((0,0),(0,1)) x1 + (5,3) s_A(x1) = (4,1) a__dbl_A(x1) = ((0,0),(0,1)) x1 + (17,5) a__add_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (12,0) a__first_A(x1,x2) = ((0,1),(0,1)) x2 + (19,6) nil_A() = (4,6) precedence: cons = first = mark = terms = a__terms = a__add = a__first > a__sqr > sqr > |0| > mark# = add = a__add# > nil > recip > dbl = s = a__dbl partial status: pi(mark#) = [] pi(recip) = [] pi(cons) = [] pi(first) = [] pi(dbl) = [] pi(add) = [] pi(a__add#) = [] pi(mark) = [] pi(|0|) = [] pi(sqr) = [] pi(terms) = [] pi(a__terms) = [] pi(a__sqr) = [] pi(s) = [] pi(a__dbl) = [] pi(a__add) = [] pi(a__first) = [] pi(nil) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(dbl(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p6: a__add#(|0|(),X) -> mark#(X) p7: mark#(sqr(X)) -> mark#(X) p8: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p5: a__add#(|0|(),X) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(dbl(X)) -> mark#(X) p8: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(1,1)) x1 + (4,2) recip_A(x1) = ((0,1),(1,1)) x1 + (5,7) terms_A(x1) = x1 + (0,4) sqr_A(x1) = x1 + (1,17) add_A(x1,x2) = x1 + ((0,1),(1,1)) x2 + (11,19) a__add#_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,1),(1,1)) x2 + (6,3) mark_A(x1) = ((0,1),(1,1)) x1 + (5,6) |0|_A() = (6,2) dbl_A(x1) = x1 + (3,5) first_A(x1,x2) = ((0,1),(1,1)) x2 + (5,6) a__terms_A(x1) = x1 + (1,4) cons_A(x1,x2) = (0,0) a__sqr_A(x1) = x1 + (16,17) s_A(x1) = (2,5) a__dbl_A(x1) = x1 + (4,5) a__add_A(x1,x2) = x1 + ((0,1),(1,1)) x2 + (12,19) a__first_A(x1,x2) = ((0,1),(1,1)) x2 + (5,6) nil_A() = (0,3) precedence: nil > a__terms > terms > recip > mark = first = cons = a__add = a__first > sqr = a__sqr > |0| = dbl = s = a__dbl > mark# = a__add# > add partial status: pi(mark#) = [] pi(recip) = [] pi(terms) = [] pi(sqr) = [] pi(add) = [] pi(a__add#) = [] pi(mark) = [] pi(|0|) = [] pi(dbl) = [] pi(first) = [] pi(a__terms) = [1] pi(cons) = [] pi(a__sqr) = [] pi(s) = [] pi(a__dbl) = [] pi(a__add) = [] pi(a__first) = [] pi(nil) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p5: a__add#(|0|(),X) -> mark#(X) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(add(X1,X2)) -> mark#(X1) p4: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p5: a__add#(|0|(),X) -> mark#(X) p6: mark#(sqr(X)) -> mark#(X) p7: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 recip_A(x1) = ((1,1),(1,1)) x1 + (11,5) first_A(x1,x2) = ((1,1),(1,1)) x2 + (12,7) add_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (27,22) a__add#_A(x1,x2) = ((1,1),(1,1)) x2 + (12,0) mark_A(x1) = ((1,1),(1,1)) x1 + (11,5) |0|_A() = (2,1) sqr_A(x1) = x1 + (1,4) terms_A(x1) = ((0,1),(1,0)) x1 + (9,0) a__terms_A(x1) = ((0,1),(1,0)) x1 + (14,3) cons_A(x1,x2) = x2 + (1,1) a__sqr_A(x1) = x1 + (2,4) s_A(x1) = (2,3) dbl_A(x1) = (1,1) a__dbl_A(x1) = (3,3) a__add_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (28,22) a__first_A(x1,x2) = ((1,1),(1,1)) x2 + (13,7) nil_A() = (1,1) precedence: mark# = a__add# > |0| > recip = mark = a__terms = a__sqr = s = a__dbl = a__add > add > first = a__first = nil > sqr > terms > cons = dbl partial status: pi(mark#) = [1] pi(recip) = [] pi(first) = [] pi(add) = [] pi(a__add#) = [2] pi(mark) = [] pi(|0|) = [] pi(sqr) = [] pi(terms) = [] pi(a__terms) = [] pi(cons) = [] pi(a__sqr) = [] pi(s) = [] pi(dbl) = [] pi(a__dbl) = [] pi(a__add) = [] pi(a__first) = [] pi(nil) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(add(X1,X2)) -> mark#(X1) p4: a__add#(|0|(),X) -> mark#(X) p5: mark#(sqr(X)) -> mark#(X) p6: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (2,2) recip_A(x1) = ((1,1),(0,1)) x1 + (3,2) terms_A(x1) = ((1,1),(1,1)) x1 + (3,2) sqr_A(x1) = ((0,0),(0,1)) x1 + (1,1) add_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) first_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(0,1)) x2 + (1,1) precedence: mark# = recip > terms > sqr = add = first partial status: pi(mark#) = [] pi(recip) = [] pi(terms) = [] pi(sqr) = [] pi(add) = [] pi(first) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(sqr(X)) -> mark#(X) p4: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (2,2) recip_A(x1) = ((1,1),(0,1)) x1 + (3,2) first_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) sqr_A(x1) = ((0,0),(0,1)) x1 + (3,1) terms_A(x1) = ((0,0),(0,1)) x1 + (3,1) precedence: first = sqr > mark# = recip > terms partial status: pi(mark#) = [] pi(recip) = [1] pi(first) = [2] pi(sqr) = [] pi(terms) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(sqr(X)) -> mark#(X) p3: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) p3: mark#(sqr(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 + (2,2) recip_A(x1) = ((1,0),(0,0)) x1 + (1,1) terms_A(x1) = ((1,1),(1,0)) x1 + (1,1) sqr_A(x1) = ((1,0),(1,1)) x1 + (3,1) precedence: recip > mark# = terms = sqr partial status: pi(mark#) = [] pi(recip) = [] pi(terms) = [] pi(sqr) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(recip(X)) -> mark#(X) p2: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (2,2) recip_A(x1) = ((0,0),(0,1)) x1 + (1,1) terms_A(x1) = ((0,1),(0,1)) x1 + (1,1) precedence: mark# = recip = terms partial status: pi(mark#) = [] pi(recip) = [] pi(terms) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(terms(X)) -> mark#(X) and R consists of: r1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) r2: a__sqr(|0|()) -> |0|() r3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: a__dbl(|0|()) -> |0|() r5: a__dbl(s(X)) -> s(s(dbl(X))) r6: a__add(|0|(),X) -> mark(X) r7: a__add(s(X),Y) -> s(add(X,Y)) r8: a__first(|0|(),X) -> nil() r9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r10: mark(terms(X)) -> a__terms(mark(X)) r11: mark(sqr(X)) -> a__sqr(mark(X)) r12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r13: mark(dbl(X)) -> a__dbl(mark(X)) r14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: mark(recip(X)) -> recip(mark(X)) r17: mark(s(X)) -> s(X) r18: mark(|0|()) -> |0|() r19: mark(nil()) -> nil() r20: a__terms(X) -> terms(X) r21: a__sqr(X) -> sqr(X) r22: a__add(X1,X2) -> add(X1,X2) r23: a__dbl(X) -> dbl(X) r24: a__first(X1,X2) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (2,2) terms_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: mark# = terms partial status: pi(mark#) = [] pi(terms) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.