YES We show the termination of the TRS R: active(c()) -> mark(f(g(c()))) active(f(g(X))) -> mark(g(X)) proper(c()) -> ok(c()) proper(f(X)) -> f(proper(X)) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(c()) -> f#(g(c())) p2: active#(c()) -> g#(c()) p3: proper#(f(X)) -> f#(proper(X)) p4: proper#(f(X)) -> proper#(X) p5: proper#(g(X)) -> g#(proper(X)) p6: proper#(g(X)) -> proper#(X) p7: f#(ok(X)) -> f#(X) p8: g#(ok(X)) -> g#(X) p9: top#(mark(X)) -> top#(proper(X)) p10: top#(mark(X)) -> proper#(X) p11: top#(ok(X)) -> top#(active(X)) p12: top#(ok(X)) -> active#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p9, p11} {p4, p6} {p7} {p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,1),(1,1)) x1 + (1,3) ok_A(x1) = x1 + (6,6) active_A(x1) = ((0,0),(1,1)) x1 + (3,1) mark_A(x1) = ((0,0),(1,1)) x1 + (2,19) proper_A(x1) = x1 + (8,8) f_A(x1) = ((0,1),(1,0)) x1 + (18,0) g_A(x1) = ((1,0),(1,0)) x1 + (0,7) c_A() = (1,44) precedence: top# = active = proper = c > f > ok = g > mark partial status: pi(top#) = [] pi(ok) = [] pi(active) = [] pi(mark) = [] pi(proper) = [1] pi(f) = [] pi(g) = [] pi(c) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The set of usable rules consists of r3, r4, r5, r6, r7 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,1),(0,1)) x1 + (1,3) mark_A(x1) = ((1,0),(1,1)) x1 + (1,5) proper_A(x1) = ((1,1),(0,0)) x1 + (2,3) f_A(x1) = ((1,1),(0,0)) x1 + (5,3) ok_A(x1) = (4,2) g_A(x1) = ((0,1),(0,0)) x1 + (3,3) c_A() = (5,1) precedence: top# = mark > proper = f = ok = g = c partial status: pi(top#) = [] pi(mark) = [1] pi(proper) = [] pi(f) = [] pi(ok) = [] pi(g) = [] pi(c) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(g(X)) -> proper#(X) p2: proper#(f(X)) -> proper#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((0,1),(0,0)) x1 + (2,2) g_A(x1) = ((0,0),(0,1)) x1 + (1,1) f_A(x1) = ((0,1),(0,1)) x1 + (1,1) precedence: proper# = g = f partial status: pi(proper#) = [] pi(g) = [] pi(f) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: proper#(f(X)) -> proper#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(f(X)) -> proper#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,0),(1,0)) x1 + (2,2) f_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: proper# = f partial status: pi(proper#) = [] pi(f) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(ok(X)) -> f#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,0),(1,0)) x1 + (2,2) ok_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: f# = ok partial status: pi(f#) = [] pi(ok) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(ok(X)) -> g#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: proper(c()) -> ok(c()) r4: proper(f(X)) -> f(proper(X)) r5: proper(g(X)) -> g(proper(X)) r6: f(ok(X)) -> ok(f(X)) r7: g(ok(X)) -> ok(g(X)) r8: top(mark(X)) -> top(proper(X)) r9: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((1,0),(1,0)) x1 + (2,2) ok_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: g# = ok partial status: pi(g#) = [] pi(ok) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.