YES We show the termination of the TRS R: a__zeros() -> cons(|0|(),zeros()) a__U11(tt(),L) -> s(a__length(mark(L))) a__and(tt(),X) -> mark(X) a__isNat(|0|()) -> tt() a__isNat(length(V1)) -> a__isNatList(V1) a__isNat(s(V1)) -> a__isNat(V1) a__isNatIList(V) -> a__isNatList(V) a__isNatIList(zeros()) -> tt() a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) a__isNatList(nil()) -> tt() a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) a__length(nil()) -> |0|() a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) mark(zeros()) -> a__zeros() mark(U11(X1,X2)) -> a__U11(mark(X1),X2) mark(length(X)) -> a__length(mark(X)) mark(and(X1,X2)) -> a__and(mark(X1),X2) mark(isNat(X)) -> a__isNat(X) mark(isNatList(X)) -> a__isNatList(X) mark(isNatIList(X)) -> a__isNatIList(X) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(|0|()) -> |0|() mark(tt()) -> tt() mark(s(X)) -> s(mark(X)) mark(nil()) -> nil() a__zeros() -> zeros() a__U11(X1,X2) -> U11(X1,X2) a__length(X) -> length(X) a__and(X1,X2) -> and(X1,X2) a__isNat(X) -> isNat(X) a__isNatList(X) -> isNatList(X) a__isNatIList(X) -> isNatIList(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__U11#(tt(),L) -> mark#(L) p3: a__and#(tt(),X) -> mark#(X) p4: a__isNat#(length(V1)) -> a__isNatList#(V1) p5: a__isNat#(s(V1)) -> a__isNat#(V1) p6: a__isNatIList#(V) -> a__isNatList#(V) p7: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p8: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p9: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p10: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p11: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p12: a__length#(cons(N,L)) -> a__and#(a__isNatList(L),isNat(N)) p13: a__length#(cons(N,L)) -> a__isNatList#(L) p14: mark#(zeros()) -> a__zeros#() p15: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p16: mark#(U11(X1,X2)) -> mark#(X1) p17: mark#(length(X)) -> a__length#(mark(X)) p18: mark#(length(X)) -> mark#(X) p19: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p20: mark#(and(X1,X2)) -> mark#(X1) p21: mark#(isNat(X)) -> a__isNat#(X) p22: mark#(isNatList(X)) -> a__isNatList#(X) p23: mark#(isNatIList(X)) -> a__isNatIList#(X) p24: mark#(cons(X1,X2)) -> mark#(X1) p25: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__isNatList#(L) p3: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(length(V1)) -> a__isNatList#(V1) p6: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(isNatIList(X)) -> a__isNatIList#(X) p11: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p12: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p13: a__isNatIList#(V) -> a__isNatList#(V) p14: mark#(isNatList(X)) -> a__isNatList#(X) p15: mark#(isNat(X)) -> a__isNat#(X) p16: mark#(and(X1,X2)) -> mark#(X1) p17: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p18: mark#(length(X)) -> mark#(X) p19: mark#(length(X)) -> a__length#(mark(X)) p20: a__length#(cons(N,L)) -> a__and#(a__isNatList(L),isNat(N)) p21: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p22: a__U11#(tt(),L) -> mark#(L) p23: mark#(U11(X1,X2)) -> mark#(X1) p24: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U11#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (9,3) tt_A() = (2,2) a__length#_A(x1) = ((0,1),(0,0)) x1 + (9,3) mark_A(x1) = ((1,1),(0,1)) x1 + (6,2) cons_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(1,1)) x2 + (4,2) a__isNatList#_A(x1) = (7,3) a__isNat#_A(x1) = (7,3) s_A(x1) = ((0,1),(0,1)) x1 + (5,0) length_A(x1) = ((0,1),(0,1)) x1 + (14,5) a__and#_A(x1,x2) = ((0,1),(0,0)) x2 + (7,3) a__isNat_A(x1) = ((0,1),(0,0)) x1 + (3,2) isNatList_A(x1) = (1,0) mark#_A(x1) = ((0,1),(0,0)) x1 + (7,3) isNatIList_A(x1) = ((0,1),(0,0)) x1 + (3,0) a__isNatIList#_A(x1) = (7,3) isNat_A(x1) = ((0,1),(0,0)) x1 + (1,0) and_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(0,1)) x2 a__isNatList_A(x1) = (7,2) a__and_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(0,1)) x2 + (4,0) U11_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (12,5) a__zeros_A() = (5,2) |0|_A() = (5,0) zeros_A() = (0,0) a__U11_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,1),(0,1)) x2 + (23,5) a__length_A(x1) = ((0,1),(0,1)) x1 + (22,5) a__isNatIList_A(x1) = ((0,1),(0,0)) x1 + (8,2) nil_A() = (6,2) precedence: |0| > nil > tt = mark = s = length = a__isNat = isNatIList = isNat = a__isNatList = a__and = U11 = a__U11 = a__length = a__isNatIList > a__zeros > cons > a__U11# = a__length# = a__isNatList# = a__isNat# = a__and# = mark# = a__isNatIList# > and > zeros > isNatList partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__length#) = [] pi(mark) = [] pi(cons) = [] pi(a__isNatList#) = [] pi(a__isNat#) = [] pi(s) = [] pi(length) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(isNatList) = [] pi(mark#) = [] pi(isNatIList) = [] pi(a__isNatIList#) = [] pi(isNat) = [] pi(and) = [] pi(a__isNatList) = [] pi(a__and) = [] pi(U11) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__length) = [] pi(a__isNatIList) = [] pi(nil) = [] The next rules are strictly ordered: p20 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__isNatList#(L) p3: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(length(V1)) -> a__isNatList#(V1) p6: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(isNatIList(X)) -> a__isNatIList#(X) p11: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p12: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p13: a__isNatIList#(V) -> a__isNatList#(V) p14: mark#(isNatList(X)) -> a__isNatList#(X) p15: mark#(isNat(X)) -> a__isNat#(X) p16: mark#(and(X1,X2)) -> mark#(X1) p17: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p18: mark#(length(X)) -> mark#(X) p19: mark#(length(X)) -> a__length#(mark(X)) p20: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p21: a__U11#(tt(),L) -> mark#(L) p22: mark#(U11(X1,X2)) -> mark#(X1) p23: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p3: a__U11#(tt(),L) -> mark#(L) p4: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p5: mark#(U11(X1,X2)) -> mark#(X1) p6: mark#(length(X)) -> a__length#(mark(X)) p7: a__length#(cons(N,L)) -> a__isNatList#(L) p8: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p9: a__and#(tt(),X) -> mark#(X) p10: mark#(length(X)) -> mark#(X) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(and(X1,X2)) -> mark#(X1) p13: mark#(isNat(X)) -> a__isNat#(X) p14: a__isNat#(length(V1)) -> a__isNatList#(V1) p15: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p16: a__isNat#(s(V1)) -> a__isNat#(V1) p17: mark#(isNatList(X)) -> a__isNatList#(X) p18: mark#(isNatIList(X)) -> a__isNatIList#(X) p19: a__isNatIList#(V) -> a__isNatList#(V) p20: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p21: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p22: mark#(cons(X1,X2)) -> mark#(X1) p23: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U11#_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (2,0) tt_A() = (0,0) a__length#_A(x1) = ((1,0),(1,1)) x1 + (2,0) mark_A(x1) = x1 cons_A(x1,x2) = x1 + ((1,1),(1,1)) x2 a__and_A(x1,x2) = x1 + x2 a__isNatList_A(x1) = ((0,1),(1,1)) x1 isNat_A(x1) = ((0,1),(1,1)) x1 mark#_A(x1) = ((1,1),(0,1)) x1 U11_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) length_A(x1) = ((1,1),(1,1)) x1 + (1,1) a__isNatList#_A(x1) = ((1,1),(1,0)) x1 a__and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,1)) x2 a__isNat_A(x1) = ((0,1),(1,1)) x1 isNatList_A(x1) = ((0,1),(1,1)) x1 and_A(x1,x2) = x1 + x2 a__isNat#_A(x1) = ((0,1),(1,0)) x1 s_A(x1) = x1 isNatIList_A(x1) = ((0,1),(1,1)) x1 + (1,1) a__isNatIList#_A(x1) = ((1,1),(1,0)) x1 + (2,1) a__zeros_A() = (0,0) |0|_A() = (0,0) zeros_A() = (0,0) a__U11_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) a__length_A(x1) = ((1,1),(1,1)) x1 + (1,1) a__isNatIList_A(x1) = ((0,1),(1,1)) x1 + (1,1) nil_A() = (1,1) precedence: mark = a__and = a__isNatList = and = isNatIList = a__zeros = a__isNatIList > a__isNat > tt > isNatList > cons = mark# = a__isNatList# = a__and# = a__isNat# = a__isNatIList# > a__U11# = a__length# = s = a__U11 = a__length > |0| > U11 > isNat > length > zeros = nil partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__length#) = [] pi(mark) = [] pi(cons) = [] pi(a__and) = [] pi(a__isNatList) = [] pi(isNat) = [] pi(mark#) = [] pi(U11) = [2] pi(length) = [] pi(a__isNatList#) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(isNatList) = [] pi(and) = [] pi(a__isNat#) = [] pi(s) = [] pi(isNatIList) = [] pi(a__isNatIList#) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__length) = [] pi(a__isNatIList) = [] pi(nil) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p3: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p4: mark#(U11(X1,X2)) -> mark#(X1) p5: mark#(length(X)) -> a__length#(mark(X)) p6: a__length#(cons(N,L)) -> a__isNatList#(L) p7: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p8: a__and#(tt(),X) -> mark#(X) p9: mark#(length(X)) -> mark#(X) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(and(X1,X2)) -> mark#(X1) p12: mark#(isNat(X)) -> a__isNat#(X) p13: a__isNat#(length(V1)) -> a__isNatList#(V1) p14: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p15: a__isNat#(s(V1)) -> a__isNat#(V1) p16: mark#(isNatList(X)) -> a__isNatList#(X) p17: mark#(isNatIList(X)) -> a__isNatIList#(X) p18: a__isNatIList#(V) -> a__isNatList#(V) p19: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p20: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p21: mark#(cons(X1,X2)) -> mark#(X1) p22: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__isNatList#(L) p3: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(length(V1)) -> a__isNatList#(V1) p6: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(isNatIList(X)) -> a__isNatIList#(X) p11: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p12: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p13: a__isNatIList#(V) -> a__isNatList#(V) p14: mark#(isNatList(X)) -> a__isNatList#(X) p15: mark#(isNat(X)) -> a__isNat#(X) p16: mark#(and(X1,X2)) -> mark#(X1) p17: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p18: mark#(length(X)) -> mark#(X) p19: mark#(length(X)) -> a__length#(mark(X)) p20: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p21: mark#(U11(X1,X2)) -> mark#(X1) p22: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U11#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (10,2) tt_A() = (3,3) a__length#_A(x1) = ((0,1),(0,0)) x1 + (10,2) mark_A(x1) = ((0,1),(0,1)) x1 + (3,3) cons_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (3,3) a__isNatList#_A(x1) = (8,2) a__isNat#_A(x1) = (8,2) s_A(x1) = x1 length_A(x1) = ((0,0),(0,1)) x1 + (8,5) a__and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((0,1),(0,0)) x2 + (5,2) a__isNat_A(x1) = (3,3) isNatList_A(x1) = (2,0) mark#_A(x1) = ((0,1),(0,0)) x1 + (8,2) isNatIList_A(x1) = ((1,1),(1,1)) x1 + (4,8) a__isNatIList#_A(x1) = ((0,1),(0,0)) x1 + (14,2) isNat_A(x1) = (2,0) and_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,1),(0,1)) x2 + (1,0) a__and_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,1),(0,1)) x2 + (3,0) a__isNatList_A(x1) = (3,3) U11_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (4,5) a__zeros_A() = (4,5) |0|_A() = (0,0) zeros_A() = (0,2) a__U11_A(x1,x2) = x1 + ((0,0),(0,1)) x2 + (5,5) a__length_A(x1) = ((0,0),(0,1)) x1 + (8,5) a__isNatIList_A(x1) = ((1,1),(1,1)) x1 + (5,8) nil_A() = (0,0) precedence: a__isNatList# = a__isNat# = a__and# = mark# = a__isNatIList# > a__U11# = a__length# > tt = mark = cons = s = length = a__isNat = isNatList = isNatIList = isNat = and = a__and = a__isNatList = U11 = a__zeros = |0| = zeros = a__U11 = a__length = a__isNatIList = nil partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__length#) = [] pi(mark) = [] pi(cons) = [] pi(a__isNatList#) = [] pi(a__isNat#) = [] pi(s) = [] pi(length) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(isNatList) = [] pi(mark#) = [] pi(isNatIList) = [] pi(a__isNatIList#) = [] pi(isNat) = [] pi(and) = [] pi(a__and) = [] pi(a__isNatList) = [] pi(U11) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__length) = [] pi(a__isNatIList) = [] pi(nil) = [] The next rules are strictly ordered: p19 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__isNatList#(L) p3: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(length(V1)) -> a__isNatList#(V1) p6: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(isNatIList(X)) -> a__isNatIList#(X) p11: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p12: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p13: a__isNatIList#(V) -> a__isNatList#(V) p14: mark#(isNatList(X)) -> a__isNatList#(X) p15: mark#(isNat(X)) -> a__isNat#(X) p16: mark#(and(X1,X2)) -> mark#(X1) p17: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p18: mark#(length(X)) -> mark#(X) p19: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p20: mark#(U11(X1,X2)) -> mark#(X1) p21: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p3: a__length#(cons(N,L)) -> a__isNatList#(L) p4: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p5: a__and#(tt(),X) -> mark#(X) p6: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p7: mark#(U11(X1,X2)) -> mark#(X1) p8: mark#(length(X)) -> mark#(X) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(length(V1)) -> a__isNatList#(V1) p13: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p14: a__isNat#(s(V1)) -> a__isNat#(V1) p15: mark#(isNatList(X)) -> a__isNatList#(X) p16: mark#(isNatIList(X)) -> a__isNatIList#(X) p17: a__isNatIList#(V) -> a__isNatList#(V) p18: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p19: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p20: mark#(cons(X1,X2)) -> mark#(X1) p21: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U11#_A(x1,x2) = ((1,0),(0,0)) x1 + (2,4) tt_A() = (7,1) a__length#_A(x1) = (9,4) mark_A(x1) = ((1,0),(1,1)) x1 + (7,3) cons_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (7,0) a__and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (0,3) a__isNatList_A(x1) = (7,4) isNat_A(x1) = (0,4) a__isNatList#_A(x1) = (8,4) a__and#_A(x1,x2) = ((1,0),(0,0)) x2 + (8,4) a__isNat_A(x1) = (7,4) isNatList_A(x1) = (0,1) mark#_A(x1) = ((1,0),(0,0)) x1 + (8,4) U11_A(x1,x2) = x1 + x2 + (6,1) length_A(x1) = x1 + (6,2) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (0,1) a__isNat#_A(x1) = (8,4) s_A(x1) = ((1,0),(0,0)) x1 + (0,2) isNatIList_A(x1) = ((1,1),(0,0)) x1 + (8,1) a__isNatIList#_A(x1) = ((1,1),(0,0)) x1 + (10,4) a__zeros_A() = (15,9) |0|_A() = (0,10) zeros_A() = (8,1) a__U11_A(x1,x2) = x1 + x2 + (6,1) a__length_A(x1) = x1 + (6,8) a__isNatIList_A(x1) = ((1,1),(0,1)) x1 + (8,12) nil_A() = (7,2) precedence: mark = cons = a__and = a__isNatList = a__isNat = a__zeros = a__isNatIList > tt > isNatIList > zeros > a__length > s = a__U11 > |0| > length > a__U11# = a__length# = isNat = a__isNatList# = a__and# = isNatList = mark# = U11 = and = a__isNat# = a__isNatIList# = nil partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__length#) = [] pi(mark) = [] pi(cons) = [] pi(a__and) = [] pi(a__isNatList) = [] pi(isNat) = [] pi(a__isNatList#) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(isNatList) = [] pi(mark#) = [] pi(U11) = [] pi(length) = [] pi(and) = [] pi(a__isNat#) = [] pi(s) = [] pi(isNatIList) = [] pi(a__isNatIList#) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [1] pi(a__length) = [1] pi(a__isNatIList) = [] pi(nil) = [] The next rules are strictly ordered: p19 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p3: a__length#(cons(N,L)) -> a__isNatList#(L) p4: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p5: a__and#(tt(),X) -> mark#(X) p6: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p7: mark#(U11(X1,X2)) -> mark#(X1) p8: mark#(length(X)) -> mark#(X) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(length(V1)) -> a__isNatList#(V1) p13: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p14: a__isNat#(s(V1)) -> a__isNat#(V1) p15: mark#(isNatList(X)) -> a__isNatList#(X) p16: mark#(isNatIList(X)) -> a__isNatIList#(X) p17: a__isNatIList#(V) -> a__isNatList#(V) p18: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p19: mark#(cons(X1,X2)) -> mark#(X1) p20: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__isNatList#(L) p3: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(length(V1)) -> a__isNatList#(V1) p6: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(isNatIList(X)) -> a__isNatIList#(X) p11: a__isNatIList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatIList(V2)) p12: a__isNatIList#(V) -> a__isNatList#(V) p13: mark#(isNatList(X)) -> a__isNatList#(X) p14: mark#(isNat(X)) -> a__isNat#(X) p15: mark#(and(X1,X2)) -> mark#(X1) p16: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p17: mark#(length(X)) -> mark#(X) p18: mark#(U11(X1,X2)) -> mark#(X1) p19: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p20: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U11#_A(x1,x2) = (3,3) tt_A() = (0,2) a__length#_A(x1) = (3,3) mark_A(x1) = ((0,0),(1,1)) x1 + (0,2) cons_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,0),(1,1)) x2 + (0,2) a__isNatList#_A(x1) = (3,3) a__isNat#_A(x1) = (3,3) s_A(x1) = ((0,0),(1,1)) x1 length_A(x1) = ((0,0),(1,1)) x1 a__and#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (1,1) a__isNat_A(x1) = (0,2) isNatList_A(x1) = (0,0) mark#_A(x1) = ((0,1),(0,1)) x1 + (3,3) isNatIList_A(x1) = ((0,0),(1,1)) x1 + (0,2) a__isNatIList#_A(x1) = ((0,1),(0,1)) x1 + (5,3) isNat_A(x1) = (0,0) and_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,0),(1,1)) x2 U11_A(x1,x2) = x1 + ((0,0),(1,1)) x2 a__and_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,0),(1,1)) x2 a__isNatList_A(x1) = (0,2) a__zeros_A() = (0,3) |0|_A() = (0,0) zeros_A() = (0,1) a__U11_A(x1,x2) = x1 + ((0,0),(1,1)) x2 a__length_A(x1) = ((0,0),(1,1)) x1 a__isNatIList_A(x1) = ((0,0),(1,1)) x1 + (0,3) nil_A() = (0,1) precedence: a__U11# = a__length# = a__isNatList# = a__isNat# = a__and# = mark# = a__isNatIList# > tt = mark = cons = a__isNat = a__and = a__isNatList = a__zeros = a__isNatIList > isNat > isNatIList > and > s = length = U11 = a__U11 = a__length > |0| = zeros = nil > isNatList partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__length#) = [] pi(mark) = [] pi(cons) = [] pi(a__isNatList#) = [] pi(a__isNat#) = [] pi(s) = [] pi(length) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(isNatList) = [] pi(mark#) = [] pi(isNatIList) = [] pi(a__isNatIList#) = [] pi(isNat) = [] pi(and) = [] pi(U11) = [] pi(a__and) = [] pi(a__isNatList) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__length) = [] pi(a__isNatIList) = [] pi(nil) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__isNatList#(L) p3: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(length(V1)) -> a__isNatList#(V1) p6: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(isNatIList(X)) -> a__isNatIList#(X) p11: a__isNatIList#(V) -> a__isNatList#(V) p12: mark#(isNatList(X)) -> a__isNatList#(X) p13: mark#(isNat(X)) -> a__isNat#(X) p14: mark#(and(X1,X2)) -> mark#(X1) p15: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p16: mark#(length(X)) -> mark#(X) p17: mark#(U11(X1,X2)) -> mark#(X1) p18: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p19: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p3: a__length#(cons(N,L)) -> a__isNatList#(L) p4: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p5: a__and#(tt(),X) -> mark#(X) p6: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p7: mark#(U11(X1,X2)) -> mark#(X1) p8: mark#(length(X)) -> mark#(X) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(length(V1)) -> a__isNatList#(V1) p13: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p14: a__isNat#(s(V1)) -> a__isNat#(V1) p15: mark#(isNatList(X)) -> a__isNatList#(X) p16: mark#(isNatIList(X)) -> a__isNatIList#(X) p17: a__isNatIList#(V) -> a__isNatList#(V) p18: mark#(cons(X1,X2)) -> mark#(X1) p19: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U11#_A(x1,x2) = (0,1) tt_A() = (0,0) a__length#_A(x1) = (0,1) mark_A(x1) = ((1,1),(1,1)) x1 cons_A(x1,x2) = x1 + ((1,1),(1,1)) x2 a__and_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(1,1)) x2 a__isNatList_A(x1) = (0,0) isNat_A(x1) = (0,0) a__isNatList#_A(x1) = (0,1) a__and#_A(x1,x2) = ((1,1),(1,1)) x2 + (0,1) a__isNat_A(x1) = (0,0) isNatList_A(x1) = (0,0) mark#_A(x1) = ((1,1),(1,1)) x1 + (0,1) U11_A(x1,x2) = x1 + ((1,1),(1,1)) x2 length_A(x1) = ((0,1),(1,0)) x1 and_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(1,1)) x2 a__isNat#_A(x1) = (0,1) s_A(x1) = x1 isNatIList_A(x1) = ((0,1),(1,1)) x1 + (1,2) a__isNatIList#_A(x1) = ((0,0),(0,1)) x1 + (2,3) a__zeros_A() = (2,2) |0|_A() = (0,0) zeros_A() = (1,1) a__U11_A(x1,x2) = x1 + ((1,1),(1,1)) x2 a__length_A(x1) = ((0,1),(1,0)) x1 a__isNatIList_A(x1) = ((1,1),(1,1)) x1 + (3,3) nil_A() = (1,1) precedence: mark = a__and = a__isNatList = isNat = a__isNat = U11 = and = s = a__isNatIList# = a__zeros = a__U11 = a__length = a__isNatIList = nil > a__U11# = a__length# = a__isNatList# = a__and# = mark# = a__isNat# > tt = cons = isNatList = zeros > |0| > isNatIList > length partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__length#) = [] pi(mark) = [] pi(cons) = [] pi(a__and) = [] pi(a__isNatList) = [] pi(isNat) = [] pi(a__isNatList#) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(isNatList) = [] pi(mark#) = [] pi(U11) = [] pi(length) = [] pi(and) = [] pi(a__isNat#) = [] pi(s) = [] pi(isNatIList) = [] pi(a__isNatIList#) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__length) = [] pi(a__isNatIList) = [] pi(nil) = [] The next rules are strictly ordered: p16 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) p3: a__length#(cons(N,L)) -> a__isNatList#(L) p4: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p5: a__and#(tt(),X) -> mark#(X) p6: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p7: mark#(U11(X1,X2)) -> mark#(X1) p8: mark#(length(X)) -> mark#(X) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(length(V1)) -> a__isNatList#(V1) p13: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p14: a__isNat#(s(V1)) -> a__isNat#(V1) p15: mark#(isNatList(X)) -> a__isNatList#(X) p16: a__isNatIList#(V) -> a__isNatList#(V) p17: mark#(cons(X1,X2)) -> mark#(X1) p18: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__isNatList#(L) p3: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(length(V1)) -> a__isNatList#(V1) p6: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(isNatList(X)) -> a__isNatList#(X) p11: mark#(isNat(X)) -> a__isNat#(X) p12: mark#(and(X1,X2)) -> mark#(X1) p13: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p14: mark#(length(X)) -> mark#(X) p15: mark#(U11(X1,X2)) -> mark#(X1) p16: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p17: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U11#_A(x1,x2) = ((0,1),(0,0)) x2 + (1,0) tt_A() = (0,0) a__length#_A(x1) = ((0,1),(0,0)) x1 + (1,0) mark_A(x1) = ((1,1),(0,1)) x1 cons_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(1,1)) x2 a__isNatList#_A(x1) = (0,0) a__isNat#_A(x1) = (0,0) s_A(x1) = x1 length_A(x1) = ((0,1),(0,1)) x1 + (2,2) a__and#_A(x1,x2) = ((0,1),(0,0)) x2 a__isNat_A(x1) = ((1,0),(0,0)) x1 isNatList_A(x1) = ((0,1),(0,0)) x1 mark#_A(x1) = ((0,1),(0,0)) x1 isNat_A(x1) = ((1,0),(0,0)) x1 and_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(0,1)) x2 U11_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,0),(1,1)) x2 + (2,2) a__and_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(0,1)) x2 a__isNatList_A(x1) = ((0,1),(0,0)) x1 a__zeros_A() = (1,1) |0|_A() = (2,0) zeros_A() = (0,1) a__U11_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (3,2) a__length_A(x1) = ((0,1),(0,1)) x1 + (3,2) a__isNatIList_A(x1) = ((1,1),(0,0)) x1 + (1,0) isNatIList_A(x1) = ((1,1),(0,0)) x1 + (1,0) nil_A() = (3,1) precedence: mark = a__isNat = a__and = a__isNatList = a__zeros = zeros = a__isNatIList = isNatIList > isNatList > a__isNatList# = a__isNat# = a__and# = mark# > length > cons = and = a__length > a__U11 > s = isNat > a__U11# = tt = a__length# = U11 = |0| = nil partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__length#) = [] pi(mark) = [] pi(cons) = [] pi(a__isNatList#) = [] pi(a__isNat#) = [] pi(s) = [] pi(length) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(isNatList) = [] pi(mark#) = [] pi(isNat) = [] pi(and) = [] pi(U11) = [2] pi(a__and) = [] pi(a__isNatList) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [2] pi(a__length) = [] pi(a__isNatIList) = [] pi(isNatIList) = [] pi(nil) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p3: a__isNat#(s(V1)) -> a__isNat#(V1) p4: a__isNat#(length(V1)) -> a__isNatList#(V1) p5: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(s(X)) -> mark#(X) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(isNatList(X)) -> a__isNatList#(X) p10: mark#(isNat(X)) -> a__isNat#(X) p11: mark#(and(X1,X2)) -> mark#(X1) p12: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p13: mark#(length(X)) -> mark#(X) p14: mark#(U11(X1,X2)) -> mark#(X1) p15: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p16: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} {p1, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(length(X)) -> mark#(X) p3: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p4: a__and#(tt(),X) -> mark#(X) p5: mark#(and(X1,X2)) -> mark#(X1) p6: mark#(isNat(X)) -> a__isNat#(X) p7: a__isNat#(length(V1)) -> a__isNatList#(V1) p8: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p9: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p10: a__isNat#(s(V1)) -> a__isNat#(V1) p11: mark#(isNatList(X)) -> a__isNatList#(X) p12: mark#(cons(X1,X2)) -> mark#(X1) p13: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 + (3,0) U11_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) length_A(x1) = ((1,1),(1,1)) x1 + (1,1) and_A(x1,x2) = x1 + x2 a__and#_A(x1,x2) = ((1,1),(1,1)) x2 + (3,0) mark_A(x1) = x1 tt_A() = (0,0) isNat_A(x1) = ((0,0),(1,1)) x1 a__isNat#_A(x1) = ((1,1),(1,1)) x1 + (1,0) a__isNatList#_A(x1) = ((0,1),(1,1)) x1 + (3,0) cons_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 a__isNat_A(x1) = ((0,0),(1,1)) x1 isNatList_A(x1) = ((0,0),(1,1)) x1 s_A(x1) = ((0,1),(1,0)) x1 a__zeros_A() = (0,0) |0|_A() = (0,0) zeros_A() = (0,0) a__U11_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) a__length_A(x1) = ((1,1),(1,1)) x1 + (1,1) a__and_A(x1,x2) = x1 + x2 a__isNatIList_A(x1) = ((0,1),(1,1)) x1 + (1,1) a__isNatList_A(x1) = ((0,0),(1,1)) x1 isNatIList_A(x1) = ((0,1),(1,1)) x1 + (1,1) nil_A() = (1,1) precedence: a__isNat# > mark# = U11 = length = and = a__and# = mark = tt = isNat = a__isNatList# = cons = a__isNat = isNatList = s = a__zeros = |0| = zeros = a__U11 = a__length = a__and = a__isNatIList = a__isNatList = isNatIList = nil partial status: pi(mark#) = [] pi(U11) = [] pi(length) = [] pi(and) = [] pi(a__and#) = [] pi(mark) = [] pi(tt) = [] pi(isNat) = [] pi(a__isNat#) = [] pi(a__isNatList#) = [] pi(cons) = [] pi(a__isNat) = [] pi(isNatList) = [] pi(s) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__length) = [] pi(a__and) = [] pi(a__isNatIList) = [] pi(a__isNatList) = [] pi(isNatIList) = [] pi(nil) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(length(X)) -> mark#(X) p3: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p4: a__and#(tt(),X) -> mark#(X) p5: mark#(and(X1,X2)) -> mark#(X1) p6: a__isNat#(length(V1)) -> a__isNatList#(V1) p7: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p8: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p9: a__isNat#(s(V1)) -> a__isNat#(V1) p10: mark#(isNatList(X)) -> a__isNatList#(X) p11: mark#(cons(X1,X2)) -> mark#(X1) p12: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(isNatList(X)) -> a__isNatList#(X) p5: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p6: a__isNat#(s(V1)) -> a__isNat#(V1) p7: a__isNat#(length(V1)) -> a__isNatList#(V1) p8: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p9: a__and#(tt(),X) -> mark#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(length(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = x1 U11_A(x1,x2) = x1 + ((0,0),(1,1)) x2 + (3,2) s_A(x1) = x1 cons_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (2,5) isNatList_A(x1) = (0,0) a__isNatList#_A(x1) = (0,0) a__isNat#_A(x1) = (0,0) length_A(x1) = x1 + (1,4) a__and#_A(x1,x2) = x2 a__isNat_A(x1) = (2,5) tt_A() = (2,5) and_A(x1,x2) = x1 + ((1,1),(0,1)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (2,5) a__zeros_A() = (6,9) |0|_A() = (0,0) zeros_A() = (3,1) a__U11_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (4,4) a__length_A(x1) = x1 + (4,4) a__and_A(x1,x2) = x1 + ((1,1),(1,1)) x2 a__isNatIList_A(x1) = ((0,1),(1,1)) x1 + (9,7) a__isNatList_A(x1) = (2,5) isNatIList_A(x1) = ((0,1),(1,0)) x1 + (1,6) nil_A() = (1,1) isNat_A(x1) = (0,0) precedence: isNatList = a__isNat = and = mark = a__and = a__isNatIList = a__isNatList > length = a__length > a__zeros = zeros = a__U11 > tt > cons > |0| > isNatIList > mark# = U11 = s = a__isNatList# = a__isNat# = a__and# = nil = isNat partial status: pi(mark#) = [] pi(U11) = [1] pi(s) = [] pi(cons) = [2] pi(isNatList) = [] pi(a__isNatList#) = [] pi(a__isNat#) = [] pi(length) = [1] pi(a__and#) = [] pi(a__isNat) = [] pi(tt) = [] pi(and) = [] pi(mark) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [2] pi(a__length) = [1] pi(a__and) = [] pi(a__isNatIList) = [] pi(a__isNatList) = [] pi(isNatIList) = [] pi(nil) = [] pi(isNat) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNatList(X)) -> a__isNatList#(X) p4: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p5: a__isNat#(s(V1)) -> a__isNat#(V1) p6: a__isNat#(length(V1)) -> a__isNatList#(V1) p7: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p8: a__and#(tt(),X) -> mark#(X) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(length(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(length(X)) -> mark#(X) p3: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p4: a__and#(tt(),X) -> mark#(X) p5: mark#(and(X1,X2)) -> mark#(X1) p6: mark#(isNatList(X)) -> a__isNatList#(X) p7: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p8: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p9: a__isNat#(length(V1)) -> a__isNatList#(V1) p10: a__isNat#(s(V1)) -> a__isNat#(V1) p11: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (4,5) U11_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,0)) x2 + (3,0) length_A(x1) = ((1,0),(0,0)) x1 + (3,1) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (0,5) a__and#_A(x1,x2) = ((1,0),(1,0)) x2 + (4,5) mark_A(x1) = ((1,0),(1,0)) x1 + (5,6) tt_A() = (5,3) isNatList_A(x1) = (0,1) a__isNatList#_A(x1) = (4,5) cons_A(x1,x2) = ((1,1),(0,0)) x2 + (5,1) a__isNat_A(x1) = (5,6) a__isNat#_A(x1) = (4,5) s_A(x1) = ((1,0),(0,0)) x1 + (0,4) a__zeros_A() = (11,1) |0|_A() = (6,2) zeros_A() = (6,0) a__U11_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,0)) x2 + (3,4) a__length_A(x1) = x1 + (3,3) a__and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (0,6) a__isNatIList_A(x1) = ((1,1),(1,1)) x1 + (6,10) a__isNatList_A(x1) = (5,6) isNatIList_A(x1) = ((1,1),(1,0)) x1 + (4,1) nil_A() = (4,2) isNat_A(x1) = (0,1) precedence: and = mark = isNatList = a__isNat = a__length = a__and = a__isNatIList = a__isNatList > U11 = a__U11 > tt = a__zeros > mark# = length = a__and# = a__isNatList# = cons = a__isNat# = nil > s > zeros > |0| = isNatIList = isNat partial status: pi(mark#) = [] pi(U11) = [] pi(length) = [] pi(and) = [] pi(a__and#) = [] pi(mark) = [] pi(tt) = [] pi(isNatList) = [] pi(a__isNatList#) = [] pi(cons) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__length) = [] pi(a__and) = [] pi(a__isNatIList) = [] pi(a__isNatList) = [] pi(isNatIList) = [] pi(nil) = [] pi(isNat) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> mark#(X) p2: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p3: a__and#(tt(),X) -> mark#(X) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(isNatList(X)) -> a__isNatList#(X) p6: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p7: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p8: a__isNat#(length(V1)) -> a__isNatList#(V1) p9: a__isNat#(s(V1)) -> a__isNat#(V1) p10: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(isNatList(X)) -> a__isNatList#(X) p4: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p5: a__isNat#(s(V1)) -> a__isNat#(V1) p6: a__isNat#(length(V1)) -> a__isNatList#(V1) p7: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p8: a__and#(tt(),X) -> mark#(X) p9: mark#(and(X1,X2)) -> mark#(X1) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (1,6) length_A(x1) = ((0,0),(0,1)) x1 + (6,6) s_A(x1) = x1 isNatList_A(x1) = ((0,0),(0,1)) x1 + (2,9) a__isNatList#_A(x1) = ((0,1),(0,0)) x1 + (10,6) cons_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(1,1)) x2 + (1,5) a__isNat#_A(x1) = ((0,1),(0,0)) x1 + (5,6) a__and#_A(x1,x2) = ((0,1),(0,0)) x2 + (1,6) a__isNat_A(x1) = ((0,1),(0,1)) x1 + (8,8) tt_A() = (7,8) and_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,1),(1,1)) x2 mark_A(x1) = ((0,1),(0,1)) x1 + (0,5) a__zeros_A() = (2,8) |0|_A() = (0,0) zeros_A() = (0,3) a__U11_A(x1,x2) = ((0,0),(1,1)) x2 + (6,11) a__length_A(x1) = ((0,0),(0,1)) x1 + (6,6) a__and_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,1),(1,1)) x2 a__isNatIList_A(x1) = ((0,1),(0,1)) x1 + (9,18) a__isNatList_A(x1) = ((0,1),(0,1)) x1 + (8,14) isNatIList_A(x1) = ((0,0),(0,1)) x1 + (1,14) nil_A() = (0,0) isNat_A(x1) = ((0,0),(0,1)) x1 + (1,8) U11_A(x1,x2) = ((0,0),(1,1)) x2 + (5,6) precedence: a__zeros > zeros > mark = a__and = a__isNatIList = isNatIList > |0| > length = a__U11 = a__length > a__isNat = nil = isNat > a__isNatList > mark# = s = isNatList = a__and# = tt > a__isNatList# = cons = a__isNat# = and = U11 partial status: pi(mark#) = [] pi(length) = [] pi(s) = [] pi(isNatList) = [] pi(a__isNatList#) = [] pi(cons) = [] pi(a__isNat#) = [] pi(a__and#) = [] pi(a__isNat) = [] pi(tt) = [] pi(and) = [] pi(mark) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__length) = [] pi(a__and) = [] pi(a__isNatIList) = [] pi(a__isNatList) = [] pi(isNatIList) = [] pi(nil) = [] pi(isNat) = [] pi(U11) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p4: a__isNat#(s(V1)) -> a__isNat#(V1) p5: a__isNat#(length(V1)) -> a__isNatList#(V1) p6: a__isNatList#(cons(V1,V2)) -> a__and#(a__isNat(V1),isNatList(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(and(X1,X2)) -> mark#(X1) p9: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p3, p4, p5} {p1, p2, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNat#(length(V1)) -> a__isNatList#(V1) p2: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p3: a__isNat#(s(V1)) -> a__isNat#(V1) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__isNat#_A(x1) = ((0,1),(0,0)) x1 + (2,2) length_A(x1) = ((0,0),(1,1)) x1 + (1,1) a__isNatList#_A(x1) = ((1,1),(0,0)) x1 + (2,2) cons_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,1) s_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: a__isNat# = length = cons = s > a__isNatList# partial status: pi(a__isNat#) = [] pi(length) = [] pi(a__isNatList#) = [] pi(cons) = [2] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p2: a__isNat#(s(V1)) -> a__isNat#(V1) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNat#(s(V1)) -> a__isNat#(V1) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__isNat#_A(x1) = ((1,0),(1,0)) x1 + (2,2) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: a__isNat# = s partial status: pi(a__isNat#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> mark#(X) p2: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p3: a__and#(tt(),X) -> mark#(X) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (0,1) length_A(x1) = ((1,0),(0,0)) x1 + (3,1) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (0,1) a__and#_A(x1,x2) = ((1,0),(1,0)) x2 + (0,1) mark_A(x1) = ((1,0),(1,1)) x1 + (2,8) tt_A() = (2,6) s_A(x1) = ((1,0),(0,0)) x1 + (0,7) a__zeros_A() = (2,4) cons_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (2,1) |0|_A() = (3,5) zeros_A() = (0,1) a__U11_A(x1,x2) = ((1,0),(1,0)) x2 + (5,7) a__length_A(x1) = ((1,0),(1,0)) x1 + (3,6) a__and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (0,8) a__isNat_A(x1) = ((0,0),(1,0)) x1 + (2,14) a__isNatList_A(x1) = ((0,0),(1,0)) x1 + (2,8) a__isNatIList_A(x1) = ((1,0),(1,0)) x1 + (3,11) isNatIList_A(x1) = ((1,0),(0,0)) x1 + (3,2) nil_A() = (4,5) isNatList_A(x1) = ((0,0),(1,0)) x1 + (0,2) isNat_A(x1) = ((0,0),(1,0)) x1 + (1,9) U11_A(x1,x2) = ((1,0),(1,0)) x2 + (4,1) precedence: and = mark = tt = a__zeros = |0| = a__and = a__isNat = a__isNatList = a__isNatIList = nil = isNat > zeros > mark# = length = a__and# = cons = a__length = isNatIList = isNatList > a__U11 > s > U11 partial status: pi(mark#) = [] pi(length) = [] pi(and) = [] pi(a__and#) = [] pi(mark) = [] pi(tt) = [] pi(s) = [] pi(a__zeros) = [] pi(cons) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__length) = [] pi(a__and) = [] pi(a__isNat) = [] pi(a__isNatList) = [] pi(a__isNatIList) = [] pi(isNatIList) = [] pi(nil) = [] pi(isNatList) = [] pi(isNat) = [] pi(U11) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p2: a__and#(tt(),X) -> mark#(X) p3: mark#(and(X1,X2)) -> mark#(X1) p4: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p2: a__and#(tt(),X) -> mark#(X) p3: mark#(s(X)) -> mark#(X) p4: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(0,0)) x1 + (2,2) and_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (2,3) a__and#_A(x1,x2) = ((1,1),(0,0)) x2 + (3,2) mark_A(x1) = ((1,1),(1,1)) x1 + (6,0) tt_A() = (3,2) s_A(x1) = x1 a__zeros_A() = (9,3) cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (6,0) |0|_A() = (0,0) zeros_A() = (1,2) a__U11_A(x1,x2) = ((1,1),(1,1)) x2 + (21,14) a__length_A(x1) = x1 + (15,14) a__and_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (3,4) a__isNat_A(x1) = ((1,1),(1,1)) x1 + (3,2) length_A(x1) = x1 + (9,7) a__isNatList_A(x1) = ((0,1),(1,1)) x1 + (14,8) a__isNatIList_A(x1) = ((0,1),(1,1)) x1 + (14,8) isNatIList_A(x1) = ((0,1),(1,0)) x1 + (7,1) nil_A() = (2,2) isNatList_A(x1) = ((0,0),(1,1)) x1 + (7,1) isNat_A(x1) = ((1,1),(1,0)) x1 + (2,1) U11_A(x1,x2) = ((1,0),(1,1)) x2 + (21,1) precedence: mark = tt = a__length = a__and = a__isNat = length = a__isNatList = a__isNatIList > mark# > s = a__U11 > and > a__zeros = |0| = nil > a__and# = zeros > cons = isNatIList = isNatList = isNat = U11 partial status: pi(mark#) = [] pi(and) = [] pi(a__and#) = [] pi(mark) = [] pi(tt) = [] pi(s) = [] pi(a__zeros) = [] pi(cons) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__length) = [] pi(a__and) = [] pi(a__isNat) = [] pi(length) = [] pi(a__isNatList) = [] pi(a__isNatIList) = [] pi(isNatIList) = [] pi(nil) = [] pi(isNatList) = [] pi(isNat) = [] pi(U11) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__and#(tt(),X) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (2,2) s_A(x1) = x1 + (1,1) and_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) precedence: mark# = s = and partial status: pi(mark#) = [] pi(s) = [1] pi(and) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = x1 + (1,1) and_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (2,1) precedence: and > mark# partial status: pi(mark#) = [1] pi(and) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),L) -> a__length#(mark(L)) p2: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U11#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (1,0) tt_A() = (22,12) a__length#_A(x1) = ((1,0),(1,1)) x1 + (8,6) mark_A(x1) = x1 + (13,0) cons_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,1)) x2 a__and_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (2,0) a__isNatList_A(x1) = x1 + (15,3) isNat_A(x1) = ((1,0),(1,0)) x1 + (1,3) a__zeros_A() = (19,1) |0|_A() = (10,13) zeros_A() = (7,1) a__U11_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,1)) x2 + (7,1) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) a__length_A(x1) = ((1,1),(0,1)) x1 + (14,2) a__isNat_A(x1) = ((1,0),(1,0)) x1 + (13,3) length_A(x1) = ((1,1),(0,1)) x1 + (14,2) a__isNatIList_A(x1) = x1 + (16,11) isNatIList_A(x1) = x1 + (4,11) nil_A() = (23,12) U11_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,1)) x2 + (7,1) isNatList_A(x1) = x1 + (10,3) and_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (1,0) precedence: mark = a__isNatList = a__zeros = a__isNat = a__isNatIList > zeros > a__U11 = a__length > isNatList > nil = U11 > a__U11# = |0| > cons > a__length# = a__and = isNat > tt > isNatIList = and > s = length partial status: pi(a__U11#) = [2] pi(tt) = [] pi(a__length#) = [1] pi(mark) = [1] pi(cons) = [2] pi(a__and) = [] pi(a__isNatList) = [] pi(isNat) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(s) = [] pi(a__length) = [] pi(a__isNat) = [] pi(length) = [] pi(a__isNatIList) = [] pi(isNatIList) = [] pi(nil) = [] pi(U11) = [] pi(isNatList) = [] pi(and) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__length#(cons(N,L)) -> a__U11#(a__and(a__isNatList(L),isNat(N)),L) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt(),L) -> s(a__length(mark(L))) r3: a__and(tt(),X) -> mark(X) r4: a__isNat(|0|()) -> tt() r5: a__isNat(length(V1)) -> a__isNatList(V1) r6: a__isNat(s(V1)) -> a__isNat(V1) r7: a__isNatIList(V) -> a__isNatList(V) r8: a__isNatIList(zeros()) -> tt() r9: a__isNatIList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatIList(V2)) r10: a__isNatList(nil()) -> tt() r11: a__isNatList(cons(V1,V2)) -> a__and(a__isNat(V1),isNatList(V2)) r12: a__length(nil()) -> |0|() r13: a__length(cons(N,L)) -> a__U11(a__and(a__isNatList(L),isNat(N)),L) r14: mark(zeros()) -> a__zeros() r15: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r16: mark(length(X)) -> a__length(mark(X)) r17: mark(and(X1,X2)) -> a__and(mark(X1),X2) r18: mark(isNat(X)) -> a__isNat(X) r19: mark(isNatList(X)) -> a__isNatList(X) r20: mark(isNatIList(X)) -> a__isNatIList(X) r21: mark(cons(X1,X2)) -> cons(mark(X1),X2) r22: mark(|0|()) -> |0|() r23: mark(tt()) -> tt() r24: mark(s(X)) -> s(mark(X)) r25: mark(nil()) -> nil() r26: a__zeros() -> zeros() r27: a__U11(X1,X2) -> U11(X1,X2) r28: a__length(X) -> length(X) r29: a__and(X1,X2) -> and(X1,X2) r30: a__isNat(X) -> isNat(X) r31: a__isNatList(X) -> isNatList(X) r32: a__isNatIList(X) -> isNatIList(X) The estimated dependency graph contains the following SCCs: (no SCCs)