YES We show the termination of the TRS R: __(__(X,Y),Z) -> __(X,__(Y,Z)) __(X,nil()) -> X __(nil(),X) -> X and(tt(),X) -> activate(X) isList(V) -> isNeList(activate(V)) isList(n__nil()) -> tt() isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) isNeList(V) -> isQid(activate(V)) isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) isNePal(V) -> isQid(activate(V)) isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) isPal(V) -> isNePal(activate(V)) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() __(X1,X2) -> n____(X1,X2) isList(X) -> n__isList(X) isNeList(X) -> n__isNeList(X) isPal(X) -> n__isPal(X) a() -> n__a() e() -> n__e() i() -> n__i() o() -> n__o() u() -> n__u() activate(n__nil()) -> nil() activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__isList(X)) -> isList(X) activate(n__isNeList(X)) -> isNeList(X) activate(n__isPal(X)) -> isPal(X) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__o()) -> o() activate(n__u()) -> u() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) p3: and#(tt(),X) -> activate#(X) p4: isList#(V) -> isNeList#(activate(V)) p5: isList#(V) -> activate#(V) p6: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p7: isList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isList#(n____(V1,V2)) -> activate#(V1) p9: isList#(n____(V1,V2)) -> activate#(V2) p10: isNeList#(V) -> isQid#(activate(V)) p11: isNeList#(V) -> activate#(V) p12: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p13: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p14: isNeList#(n____(V1,V2)) -> activate#(V1) p15: isNeList#(n____(V1,V2)) -> activate#(V2) p16: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p17: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p18: isNeList#(n____(V1,V2)) -> activate#(V1) p19: isNeList#(n____(V1,V2)) -> activate#(V2) p20: isNePal#(V) -> isQid#(activate(V)) p21: isNePal#(V) -> activate#(V) p22: isNePal#(n____(I,n____(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p23: isNePal#(n____(I,n____(P,I))) -> isQid#(activate(I)) p24: isNePal#(n____(I,n____(P,I))) -> activate#(I) p25: isNePal#(n____(I,n____(P,I))) -> activate#(P) p26: isPal#(V) -> isNePal#(activate(V)) p27: isPal#(V) -> activate#(V) p28: activate#(n__nil()) -> nil#() p29: activate#(n____(X1,X2)) -> __#(activate(X1),activate(X2)) p30: activate#(n____(X1,X2)) -> activate#(X1) p31: activate#(n____(X1,X2)) -> activate#(X2) p32: activate#(n__isList(X)) -> isList#(X) p33: activate#(n__isNeList(X)) -> isNeList#(X) p34: activate#(n__isPal(X)) -> isPal#(X) p35: activate#(n__a()) -> a#() p36: activate#(n__e()) -> e#() p37: activate#(n__i()) -> i#() p38: activate#(n__o()) -> o#() p39: activate#(n__u()) -> u#() and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3, p4, p5, p6, p7, p8, p9, p11, p12, p13, p14, p15, p16, p17, p18, p19, p21, p22, p24, p25, p26, p27, p30, p31, p32, p33, p34} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,n____(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: activate#(n__isList(X)) -> isList#(X) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: activate#(n____(X1,X2)) -> activate#(X2) p10: activate#(n____(X1,X2)) -> activate#(X1) p11: isList#(n____(V1,V2)) -> activate#(V1) p12: isList#(n____(V1,V2)) -> isList#(activate(V1)) p13: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p14: and#(tt(),X) -> activate#(X) p15: isList#(V) -> activate#(V) p16: isList#(V) -> isNeList#(activate(V)) p17: isNeList#(n____(V1,V2)) -> activate#(V1) p18: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p19: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p20: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p21: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p22: isNeList#(V) -> activate#(V) p23: isNePal#(n____(I,n____(P,I))) -> activate#(I) p24: isNePal#(n____(I,n____(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p25: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((0,1),(0,0)) x1 + (10,13) activate#_A(x1) = ((0,1),(0,0)) x1 + (9,13) n__isPal_A(x1) = ((0,0),(0,1)) x1 + (1,2) isNePal#_A(x1) = ((0,1),(0,0)) x1 + (9,13) activate_A(x1) = ((1,1),(0,1)) x1 + (6,0) n_____A(x1,x2) = x1 + x2 + (4,6) n__isNeList_A(x1) = ((0,0),(0,1)) x1 isNeList#_A(x1) = ((0,1),(0,0)) x1 + (9,13) n__isList_A(x1) = ((0,0),(0,1)) x1 isList#_A(x1) = ((0,1),(0,0)) x1 + (9,13) and#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (5,13) isList_A(x1) = ((0,1),(0,1)) x1 + (6,0) tt_A() = (10,7) isNeList_A(x1) = ((0,1),(0,1)) x1 + (5,0) isQid_A(x1) = ((0,1),(0,1)) x1 + (1,0) isNePal_A(x1) = ((0,1),(0,1)) x1 + (9,1) and_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,1)) x2 + (0,6) ___A(x1,x2) = x1 + x2 + (4,6) nil_A() = (2,7) isPal_A(x1) = ((0,1),(0,1)) x1 + (9,2) n__nil_A() = (1,7) a_A() = (10,10) n__a_A() = (9,10) e_A() = (12,10) n__e_A() = (11,10) i_A() = (12,10) n__i_A() = (11,10) o_A() = (2,10) n__o_A() = (1,10) u_A() = (12,10) n__u_A() = (11,10) precedence: isPal# = activate# = isNePal# = activate = isNeList# = isList# = and# = isList = isNePal = isPal = n__nil = o = u > and = nil > e > a = n__a > n____ = n__isNeList = isNeList = isQid = __ > tt > n__e = i = n__i = n__u > n__o > n__isPal = n__isList partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isPal) = [] pi(isNePal#) = [] pi(activate) = [1] pi(n____) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n__isList) = [] pi(isList#) = [] pi(and#) = [] pi(isList) = [] pi(tt) = [] pi(isNeList) = [] pi(isQid) = [] pi(isNePal) = [] pi(and) = [] pi(__) = [1, 2] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] The next rules are strictly ordered: p17 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,n____(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: activate#(n__isList(X)) -> isList#(X) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: activate#(n____(X1,X2)) -> activate#(X2) p10: activate#(n____(X1,X2)) -> activate#(X1) p11: isList#(n____(V1,V2)) -> activate#(V1) p12: isList#(n____(V1,V2)) -> isList#(activate(V1)) p13: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p14: and#(tt(),X) -> activate#(X) p15: isList#(V) -> activate#(V) p16: isList#(V) -> isNeList#(activate(V)) p17: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p18: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p19: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p20: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p21: isNeList#(V) -> activate#(V) p22: isNePal#(n____(I,n____(P,I))) -> activate#(I) p23: isNePal#(n____(I,n____(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p24: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n____(X1,X2)) -> activate#(X1) p3: activate#(n____(X1,X2)) -> activate#(X2) p4: activate#(n__isList(X)) -> isList#(X) p5: isList#(V) -> isNeList#(activate(V)) p6: isNeList#(V) -> activate#(V) p7: activate#(n__isNeList(X)) -> isNeList#(X) p8: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p9: and#(tt(),X) -> activate#(X) p10: activate#(n__isPal(X)) -> isPal#(X) p11: isPal#(V) -> isNePal#(activate(V)) p12: isNePal#(V) -> activate#(V) p13: isNePal#(n____(I,n____(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p14: isNePal#(n____(I,n____(P,I))) -> activate#(I) p15: isNePal#(n____(I,n____(P,I))) -> activate#(P) p16: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p17: isList#(V) -> activate#(V) p18: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p19: isList#(n____(V1,V2)) -> isList#(activate(V1)) p20: isList#(n____(V1,V2)) -> activate#(V1) p21: isList#(n____(V1,V2)) -> activate#(V2) p22: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p23: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p24: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((1,1),(0,1)) x1 + (15,14) activate#_A(x1) = ((0,1),(0,1)) x1 + (3,3) n_____A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,6) n__isList_A(x1) = ((0,0),(0,1)) x1 + (22,3) isList#_A(x1) = ((0,1),(0,1)) x1 + (5,3) isNeList#_A(x1) = ((0,1),(0,1)) x1 + (4,3) activate_A(x1) = x1 n__isNeList_A(x1) = ((0,0),(0,1)) x1 + (22,2) and#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,1)) x2 + (4,5) isList_A(x1) = ((0,0),(0,1)) x1 + (22,3) tt_A() = (4,0) n__isPal_A(x1) = ((0,1),(1,1)) x1 + (23,13) isNePal#_A(x1) = ((1,1),(0,1)) x1 + (6,6) isQid_A(x1) = (21,2) isNeList_A(x1) = ((0,0),(0,1)) x1 + (22,2) isNePal_A(x1) = ((0,1),(0,1)) x1 + (22,6) and_A(x1,x2) = x2 + (0,5) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,6) nil_A() = (1,0) isPal_A(x1) = ((0,1),(1,1)) x1 + (23,13) n__nil_A() = (1,0) a_A() = (5,1) n__a_A() = (5,1) e_A() = (5,1) n__e_A() = (5,1) i_A() = (5,1) n__i_A() = (5,1) o_A() = (5,1) n__o_A() = (5,1) u_A() = (5,1) n__u_A() = (5,1) precedence: isPal# = n__isList = activate = n__isNeList = isList = isQid = isNeList = isNePal = and = a = n__a > tt = nil > n__nil > isNePal# = e > activate# = isList# = isNeList# = and# > n__isPal = isPal > n____ = __ > n__e = i = o > n__i = u > n__o = n__u partial status: pi(isPal#) = [] pi(activate#) = [] pi(n____) = [] pi(n__isList) = [] pi(isList#) = [] pi(isNeList#) = [] pi(activate) = [] pi(n__isNeList) = [] pi(and#) = [] pi(isList) = [] pi(tt) = [] pi(n__isPal) = [] pi(isNePal#) = [1] pi(isQid) = [] pi(isNeList) = [] pi(isNePal) = [] pi(and) = [] pi(__) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] The next rules are strictly ordered: p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n____(X1,X2)) -> activate#(X1) p3: activate#(n____(X1,X2)) -> activate#(X2) p4: activate#(n__isList(X)) -> isList#(X) p5: isList#(V) -> isNeList#(activate(V)) p6: isNeList#(V) -> activate#(V) p7: activate#(n__isNeList(X)) -> isNeList#(X) p8: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p9: and#(tt(),X) -> activate#(X) p10: activate#(n__isPal(X)) -> isPal#(X) p11: isPal#(V) -> isNePal#(activate(V)) p12: isNePal#(V) -> activate#(V) p13: isNePal#(n____(I,n____(P,I))) -> activate#(I) p14: isNePal#(n____(I,n____(P,I))) -> activate#(P) p15: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p16: isList#(V) -> activate#(V) p17: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p18: isList#(n____(V1,V2)) -> isList#(activate(V1)) p19: isList#(n____(V1,V2)) -> activate#(V1) p20: isList#(n____(V1,V2)) -> activate#(V2) p21: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p22: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p23: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,n____(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: activate#(n__isList(X)) -> isList#(X) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: activate#(n____(X1,X2)) -> activate#(X2) p10: activate#(n____(X1,X2)) -> activate#(X1) p11: isList#(n____(V1,V2)) -> activate#(V1) p12: isList#(n____(V1,V2)) -> isList#(activate(V1)) p13: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p14: and#(tt(),X) -> activate#(X) p15: isList#(V) -> activate#(V) p16: isList#(V) -> isNeList#(activate(V)) p17: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p18: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p19: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p20: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p21: isNeList#(V) -> activate#(V) p22: isNePal#(n____(I,n____(P,I))) -> activate#(I) p23: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((1,0),(0,0)) x1 + (18,1) activate#_A(x1) = ((1,0),(0,0)) x1 + (7,1) n__isPal_A(x1) = ((1,1),(0,1)) x1 + (17,3) isNePal#_A(x1) = ((1,0),(0,0)) x1 + (8,1) activate_A(x1) = x1 n_____A(x1,x2) = x1 + x2 + (8,1) n__isNeList_A(x1) = ((1,0),(1,0)) x1 + (10,3) isNeList#_A(x1) = ((1,0),(0,0)) x1 + (16,1) n__isList_A(x1) = ((1,0),(1,0)) x1 + (11,3) isList#_A(x1) = ((1,0),(0,0)) x1 + (17,1) and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (2,1) isList_A(x1) = ((1,0),(1,0)) x1 + (11,3) tt_A() = (6,2) isNeList_A(x1) = ((1,0),(1,0)) x1 + (10,3) isNePal_A(x1) = ((1,1),(0,1)) x1 + (10,3) isQid_A(x1) = ((1,0),(0,0)) x1 + (9,3) and_A(x1,x2) = x2 + (1,0) ___A(x1,x2) = x1 + x2 + (8,1) nil_A() = (1,1) isPal_A(x1) = ((1,1),(0,1)) x1 + (17,3) n__nil_A() = (1,1) n__a_A() = (1,2) n__e_A() = (7,1) n__i_A() = (1,2) n__o_A() = (0,0) n__u_A() = (1,1) a_A() = (1,2) e_A() = (7,1) i_A() = (1,2) o_A() = (0,0) u_A() = (1,1) precedence: isNePal# > and > n__a = a > n__isPal = isPal > activate > isList = tt = isNeList = __ > n__isList > isPal# = activate# > isNePal = isQid > n__isNeList > isNeList# = isList# > and# > n____ > u > nil = n__nil = e = o > n__o > n__e = n__i = n__u = i partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isPal) = [] pi(isNePal#) = [] pi(activate) = [1] pi(n____) = [2] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n__isList) = [] pi(isList#) = [] pi(and#) = [] pi(isList) = [] pi(tt) = [] pi(isNeList) = [] pi(isNePal) = [] pi(isQid) = [] pi(and) = [] pi(__) = [1, 2] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,n____(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: activate#(n__isList(X)) -> isList#(X) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: activate#(n____(X1,X2)) -> activate#(X2) p10: activate#(n____(X1,X2)) -> activate#(X1) p11: isList#(n____(V1,V2)) -> activate#(V1) p12: isList#(n____(V1,V2)) -> isList#(activate(V1)) p13: and#(tt(),X) -> activate#(X) p14: isList#(V) -> activate#(V) p15: isList#(V) -> isNeList#(activate(V)) p16: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p17: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p18: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p19: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p20: isNeList#(V) -> activate#(V) p21: isNePal#(n____(I,n____(P,I))) -> activate#(I) p22: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n____(X1,X2)) -> activate#(X1) p3: activate#(n____(X1,X2)) -> activate#(X2) p4: activate#(n__isList(X)) -> isList#(X) p5: isList#(V) -> isNeList#(activate(V)) p6: isNeList#(V) -> activate#(V) p7: activate#(n__isNeList(X)) -> isNeList#(X) p8: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p9: and#(tt(),X) -> activate#(X) p10: activate#(n__isPal(X)) -> isPal#(X) p11: isPal#(V) -> isNePal#(activate(V)) p12: isNePal#(V) -> activate#(V) p13: isNePal#(n____(I,n____(P,I))) -> activate#(I) p14: isNePal#(n____(I,n____(P,I))) -> activate#(P) p15: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p16: isList#(V) -> activate#(V) p17: isList#(n____(V1,V2)) -> isList#(activate(V1)) p18: isList#(n____(V1,V2)) -> activate#(V1) p19: isList#(n____(V1,V2)) -> activate#(V2) p20: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p21: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p22: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((1,0),(0,0)) x1 + (13,11) activate#_A(x1) = ((1,0),(0,0)) x1 + (11,11) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (5,5) n__isList_A(x1) = ((1,1),(1,0)) x1 + (6,2) isList#_A(x1) = ((1,1),(0,0)) x1 + (16,11) isNeList#_A(x1) = ((1,1),(0,0)) x1 + (15,11) activate_A(x1) = x1 n__isNeList_A(x1) = ((1,1),(1,0)) x1 + (4,2) and#_A(x1,x2) = ((1,0),(0,0)) x2 + (12,11) isList_A(x1) = ((1,1),(1,0)) x1 + (6,2) tt_A() = (2,2) n__isPal_A(x1) = ((1,1),(0,1)) x1 + (13,11) isNePal#_A(x1) = ((1,0),(0,0)) x1 + (12,11) isNeList_A(x1) = ((1,1),(1,0)) x1 + (4,2) isNePal_A(x1) = ((0,1),(0,1)) x1 + (12,5) isQid_A(x1) = ((0,1),(0,0)) x1 + (3,2) and_A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (1,2) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (5,5) nil_A() = (3,1) isPal_A(x1) = ((1,1),(0,1)) x1 + (13,11) n__nil_A() = (3,1) n__a_A() = (3,2) n__e_A() = (3,2) n__i_A() = (3,2) n__o_A() = (1,0) n__u_A() = (1,1) a_A() = (3,2) e_A() = (3,2) i_A() = (3,2) o_A() = (1,0) u_A() = (1,1) precedence: activate > isList# = nil = n__nil = n__a = n__o = n__u = a = i = o = u > __ = n__e = e > isList = isNeList > n__isList = and > isNePal > tt = isQid = n__i > isPal# = n__isNeList = n__isPal = isNePal# = isPal > activate# = isNeList# = and# > n____ partial status: pi(isPal#) = [] pi(activate#) = [] pi(n____) = [] pi(n__isList) = [] pi(isList#) = [] pi(isNeList#) = [] pi(activate) = [] pi(n__isNeList) = [] pi(and#) = [] pi(isList) = [] pi(tt) = [] pi(n__isPal) = [] pi(isNePal#) = [] pi(isNeList) = [] pi(isNePal) = [] pi(isQid) = [] pi(and) = [1] pi(__) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n____(X1,X2)) -> activate#(X1) p3: activate#(n____(X1,X2)) -> activate#(X2) p4: activate#(n__isList(X)) -> isList#(X) p5: isNeList#(V) -> activate#(V) p6: activate#(n__isNeList(X)) -> isNeList#(X) p7: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p8: and#(tt(),X) -> activate#(X) p9: activate#(n__isPal(X)) -> isPal#(X) p10: isPal#(V) -> isNePal#(activate(V)) p11: isNePal#(V) -> activate#(V) p12: isNePal#(n____(I,n____(P,I))) -> activate#(I) p13: isNePal#(n____(I,n____(P,I))) -> activate#(P) p14: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p15: isList#(V) -> activate#(V) p16: isList#(n____(V1,V2)) -> isList#(activate(V1)) p17: isList#(n____(V1,V2)) -> activate#(V1) p18: isList#(n____(V1,V2)) -> activate#(V2) p19: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p20: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p21: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,n____(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: activate#(n__isList(X)) -> isList#(X) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: activate#(n____(X1,X2)) -> activate#(X2) p10: activate#(n____(X1,X2)) -> activate#(X1) p11: isList#(n____(V1,V2)) -> activate#(V1) p12: isList#(n____(V1,V2)) -> isList#(activate(V1)) p13: isList#(V) -> activate#(V) p14: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p15: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p16: and#(tt(),X) -> activate#(X) p17: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p18: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p19: isNeList#(V) -> activate#(V) p20: isNePal#(n____(I,n____(P,I))) -> activate#(I) p21: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((1,1),(0,0)) x1 + (14,0) activate#_A(x1) = ((1,1),(0,0)) x1 + (1,0) n__isPal_A(x1) = ((0,1),(1,1)) x1 + (13,17) isNePal#_A(x1) = ((1,1),(0,0)) x1 + (2,0) activate_A(x1) = x1 n_____A(x1,x2) = x1 + x2 + (6,8) n__isNeList_A(x1) = ((1,1),(0,0)) x1 + (7,9) isNeList#_A(x1) = ((1,1),(0,0)) x1 + (5,0) n__isList_A(x1) = ((1,1),(0,0)) x1 + (7,9) isList#_A(x1) = ((1,1),(0,0)) x1 + (5,0) and#_A(x1,x2) = ((1,1),(0,0)) x2 + (2,0) isNeList_A(x1) = ((1,1),(0,0)) x1 + (7,9) tt_A() = (0,2) isList_A(x1) = ((1,1),(0,0)) x1 + (7,9) isNePal_A(x1) = ((0,1),(1,1)) x1 + (12,8) isQid_A(x1) = (0,8) and_A(x1,x2) = x2 + (14,0) ___A(x1,x2) = x1 + x2 + (6,8) nil_A() = (1,2) isPal_A(x1) = ((0,1),(1,1)) x1 + (13,17) n__nil_A() = (1,2) n__a_A() = (1,1) n__e_A() = (1,0) n__i_A() = (1,0) n__o_A() = (1,2) n__u_A() = (1,2) a_A() = (1,1) e_A() = (1,0) i_A() = (1,0) o_A() = (1,2) u_A() = (1,2) precedence: n__isPal = activate = n__isNeList = n__isList = isNeList = isList = isNePal = and = isPal > n____ = __ > nil > isQid > tt > n__nil > n__i = i > n__o = o > isPal# = activate# = isNePal# = isNeList# = isList# = and# = n__a = n__e = n__u = a = e = u partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isPal) = [] pi(isNePal#) = [] pi(activate) = [] pi(n____) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n__isList) = [] pi(isList#) = [] pi(and#) = [] pi(isNeList) = [] pi(tt) = [] pi(isList) = [] pi(isNePal) = [] pi(isQid) = [] pi(and) = [] pi(__) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p19 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,n____(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: activate#(n__isList(X)) -> isList#(X) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: activate#(n____(X1,X2)) -> activate#(X2) p10: activate#(n____(X1,X2)) -> activate#(X1) p11: isList#(n____(V1,V2)) -> activate#(V1) p12: isList#(n____(V1,V2)) -> isList#(activate(V1)) p13: isList#(V) -> activate#(V) p14: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p15: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p16: and#(tt(),X) -> activate#(X) p17: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p18: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p19: isNePal#(n____(I,n____(P,I))) -> activate#(I) p20: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n____(X1,X2)) -> activate#(X1) p3: activate#(n____(X1,X2)) -> activate#(X2) p4: activate#(n__isList(X)) -> isList#(X) p5: isList#(V) -> activate#(V) p6: activate#(n__isNeList(X)) -> isNeList#(X) p7: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p8: and#(tt(),X) -> activate#(X) p9: activate#(n__isPal(X)) -> isPal#(X) p10: isPal#(V) -> isNePal#(activate(V)) p11: isNePal#(V) -> activate#(V) p12: isNePal#(n____(I,n____(P,I))) -> activate#(I) p13: isNePal#(n____(I,n____(P,I))) -> activate#(P) p14: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p15: isList#(n____(V1,V2)) -> isList#(activate(V1)) p16: isList#(n____(V1,V2)) -> activate#(V1) p17: isList#(n____(V1,V2)) -> activate#(V2) p18: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p19: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p20: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((1,1),(1,1)) x1 + (4,0) activate#_A(x1) = ((1,0),(1,0)) x1 + (2,0) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (0,3) n__isList_A(x1) = ((1,0),(0,0)) x1 + (2,3) isList#_A(x1) = ((1,0),(1,0)) x1 + (3,0) n__isNeList_A(x1) = ((1,0),(0,0)) x1 + (2,3) isNeList#_A(x1) = ((1,0),(1,0)) x1 + (4,2) and#_A(x1,x2) = ((1,0),(1,0)) x2 + (2,0) isList_A(x1) = ((1,0),(0,0)) x1 + (2,3) activate_A(x1) = x1 tt_A() = (0,2) n__isPal_A(x1) = ((1,1),(1,0)) x1 + (3,7) isNePal#_A(x1) = ((1,1),(1,0)) x1 + (3,0) isNeList_A(x1) = ((1,0),(0,0)) x1 + (2,3) isNePal_A(x1) = ((0,1),(1,0)) x1 + (3,7) isQid_A(x1) = (0,2) and_A(x1,x2) = x2 ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (0,3) nil_A() = (0,0) isPal_A(x1) = ((1,1),(1,0)) x1 + (3,7) n__nil_A() = (0,0) n__a_A() = (1,0) n__e_A() = (1,1) n__i_A() = (1,1) n__o_A() = (1,2) n__u_A() = (1,2) a_A() = (1,0) e_A() = (1,1) i_A() = (1,1) o_A() = (1,2) u_A() = (1,2) precedence: n____ = n__isList = n__isNeList = isList = activate = isNeList = isNePal = and = __ = isPal > nil > n__isPal = isQid > isPal# = activate# = isList# = isNeList# = and# = isNePal# > n__nil = n__e = a = e = o > tt = n__o = n__u = u > n__a = n__i = i partial status: pi(isPal#) = [] pi(activate#) = [] pi(n____) = [] pi(n__isList) = [] pi(isList#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(and#) = [] pi(isList) = [] pi(activate) = [] pi(tt) = [] pi(n__isPal) = [] pi(isNePal#) = [] pi(isNeList) = [] pi(isNePal) = [] pi(isQid) = [] pi(and) = [] pi(__) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n____(X1,X2)) -> activate#(X1) p3: activate#(n____(X1,X2)) -> activate#(X2) p4: activate#(n__isList(X)) -> isList#(X) p5: isList#(V) -> activate#(V) p6: activate#(n__isNeList(X)) -> isNeList#(X) p7: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p8: and#(tt(),X) -> activate#(X) p9: activate#(n__isPal(X)) -> isPal#(X) p10: isPal#(V) -> isNePal#(activate(V)) p11: isNePal#(V) -> activate#(V) p12: isNePal#(n____(I,n____(P,I))) -> activate#(P) p13: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p14: isList#(n____(V1,V2)) -> isList#(activate(V1)) p15: isList#(n____(V1,V2)) -> activate#(V1) p16: isList#(n____(V1,V2)) -> activate#(V2) p17: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p18: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p19: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,n____(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: activate#(n__isList(X)) -> isList#(X) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: activate#(n____(X1,X2)) -> activate#(X2) p10: activate#(n____(X1,X2)) -> activate#(X1) p11: isList#(n____(V1,V2)) -> activate#(V1) p12: isList#(n____(V1,V2)) -> isList#(activate(V1)) p13: isList#(V) -> activate#(V) p14: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p15: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p16: and#(tt(),X) -> activate#(X) p17: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p18: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p19: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((1,1),(0,0)) x1 + (5,1) activate#_A(x1) = ((0,1),(0,0)) x1 + (3,1) n__isPal_A(x1) = ((1,0),(1,1)) x1 + (7,3) isNePal#_A(x1) = ((1,1),(0,0)) x1 + (4,1) activate_A(x1) = x1 n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (3,1) n__isNeList_A(x1) = ((0,0),(1,1)) x1 + (5,4) isNeList#_A(x1) = ((1,1),(0,0)) x1 + (6,1) n__isList_A(x1) = ((0,0),(1,1)) x1 + (5,4) isList#_A(x1) = ((0,1),(0,0)) x1 + (6,1) and#_A(x1,x2) = ((0,1),(0,0)) x2 + (4,1) isNeList_A(x1) = ((0,0),(1,1)) x1 + (5,4) tt_A() = (2,0) isList_A(x1) = ((0,0),(1,1)) x1 + (5,4) isNePal_A(x1) = ((1,0),(1,1)) x1 + (7,3) isQid_A(x1) = ((0,0),(1,1)) x1 + (4,3) and_A(x1,x2) = x2 ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (3,1) nil_A() = (3,1) isPal_A(x1) = ((1,0),(1,1)) x1 + (7,3) n__nil_A() = (3,1) n__a_A() = (3,1) n__e_A() = (3,1) n__i_A() = (3,1) n__o_A() = (3,1) n__u_A() = (1,1) a_A() = (3,1) e_A() = (3,1) i_A() = (3,1) o_A() = (3,1) u_A() = (1,1) precedence: isPal# = isNePal# = activate = n__isList = isNeList = isList = and > i > __ > a > nil > n____ > activate# > isPal > tt > n__nil > n__isPal = n__isNeList = n__i > o > n__a = n__o > n__e = n__u = e = u > isNeList# > isList# = and# > isNePal = isQid partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isPal) = [] pi(isNePal#) = [] pi(activate) = [] pi(n____) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n__isList) = [] pi(isList#) = [] pi(and#) = [] pi(isNeList) = [] pi(tt) = [] pi(isList) = [] pi(isNePal) = [] pi(isQid) = [] pi(and) = [] pi(__) = [] pi(nil) = [] pi(isPal) = [1] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: isPal#(V) -> isNePal#(activate(V)) p3: isNePal#(n____(I,n____(P,I))) -> activate#(P) p4: activate#(n__isNeList(X)) -> isNeList#(X) p5: isNeList#(n____(V1,V2)) -> activate#(V2) p6: activate#(n__isList(X)) -> isList#(X) p7: isList#(n____(V1,V2)) -> activate#(V2) p8: activate#(n____(X1,X2)) -> activate#(X2) p9: activate#(n____(X1,X2)) -> activate#(X1) p10: isList#(n____(V1,V2)) -> activate#(V1) p11: isList#(n____(V1,V2)) -> isList#(activate(V1)) p12: isList#(V) -> activate#(V) p13: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p14: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p15: and#(tt(),X) -> activate#(X) p16: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p17: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p18: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p3: and#(tt(),X) -> activate#(X) p4: activate#(n____(X1,X2)) -> activate#(X1) p5: activate#(n____(X1,X2)) -> activate#(X2) p6: activate#(n__isList(X)) -> isList#(X) p7: isList#(V) -> activate#(V) p8: isList#(n____(V1,V2)) -> isList#(activate(V1)) p9: isList#(n____(V1,V2)) -> activate#(V1) p10: isList#(n____(V1,V2)) -> activate#(V2) p11: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p12: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p13: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p14: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,0)) x1 + (5,1) n__isNeList_A(x1) = ((0,1),(1,1)) x1 + (5,0) isNeList#_A(x1) = ((1,1),(0,0)) x1 + (4,1) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (3,0) and#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (4,1) isList_A(x1) = ((0,1),(1,1)) x1 + (5,2) activate_A(x1) = x1 tt_A() = (2,2) n__isList_A(x1) = ((0,1),(1,1)) x1 + (5,2) isList#_A(x1) = ((0,1),(0,0)) x1 + (6,1) isNeList_A(x1) = ((0,1),(1,1)) x1 + (5,0) isNePal_A(x1) = ((1,1),(0,1)) x1 + (2,1) isQid_A(x1) = ((0,1),(0,1)) x1 + (1,0) and_A(x1,x2) = x2 n__isPal_A(x1) = ((1,1),(0,1)) x1 + (7,1) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (3,0) nil_A() = (1,1) isPal_A(x1) = ((1,1),(0,1)) x1 + (7,1) n__nil_A() = (1,1) n__a_A() = (1,2) n__e_A() = (2,2) n__i_A() = (1,2) n__o_A() = (3,2) n__u_A() = (1,2) a_A() = (1,2) e_A() = (2,2) i_A() = (1,2) o_A() = (3,2) u_A() = (1,2) precedence: activate# = isNeList# = n____ = and# = isList = activate = n__isList = isList# = isNeList = isNePal = and = n__isPal = __ = isPal = n__e = n__i = n__o = e = i = o > n__isNeList > isQid > tt = nil = n__nil > n__a = n__u = a = u partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [] pi(and#) = [] pi(isList) = [] pi(activate) = [] pi(tt) = [] pi(n__isList) = [] pi(isList#) = [] pi(isNeList) = [] pi(isNePal) = [] pi(isQid) = [] pi(and) = [] pi(n__isPal) = [] pi(__) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p3: and#(tt(),X) -> activate#(X) p4: activate#(n____(X1,X2)) -> activate#(X1) p5: activate#(n____(X1,X2)) -> activate#(X2) p6: activate#(n__isList(X)) -> isList#(X) p7: isList#(V) -> activate#(V) p8: isList#(n____(V1,V2)) -> isList#(activate(V1)) p9: isList#(n____(V1,V2)) -> activate#(V2) p10: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p11: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p12: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p13: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> activate#(V2) p3: activate#(n__isList(X)) -> isList#(X) p4: isList#(n____(V1,V2)) -> activate#(V2) p5: activate#(n____(X1,X2)) -> activate#(X2) p6: activate#(n____(X1,X2)) -> activate#(X1) p7: isList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isList#(V) -> activate#(V) p9: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p10: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p13: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,0),(0,0)) x1 + (15,4) n__isNeList_A(x1) = ((1,0),(0,0)) x1 + (7,2) isNeList#_A(x1) = ((1,0),(0,0)) x1 + (17,4) n_____A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (14,3) n__isList_A(x1) = ((1,0),(0,0)) x1 + (16,1) isList#_A(x1) = ((1,0),(0,0)) x1 + (15,4) activate_A(x1) = ((1,0),(1,1)) x1 and#_A(x1,x2) = ((1,0),(0,0)) x2 + (15,4) isNeList_A(x1) = ((1,0),(1,0)) x1 + (7,3) tt_A() = (7,2) isList_A(x1) = ((1,0),(1,0)) x1 + (16,5) isNePal_A(x1) = ((1,0),(1,0)) x1 + (28,8) isQid_A(x1) = ((1,0),(1,0)) x1 + (6,3) and_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(1,1)) x2 + (1,0) n__isPal_A(x1) = ((1,0),(0,0)) x1 + (29,7) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (14,4) nil_A() = (0,1) isPal_A(x1) = ((1,0),(1,0)) x1 + (29,8) n__nil_A() = (0,1) n__a_A() = (7,1) n__e_A() = (7,1) n__i_A() = (7,1) n__o_A() = (7,1) n__u_A() = (1,1) a_A() = (7,2) e_A() = (7,2) i_A() = (7,2) o_A() = (7,2) u_A() = (1,1) precedence: activate = isNePal = and = n__a = n__e = a = e = i > n__u = u > n__isNeList = isNeList = isList = n__isPal = isPal > isNeList# > n__isList = and# > isQid > isList# > activate# > n____ = tt = __ > nil = n__nil = n__i > n__o = o partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [] pi(n__isList) = [] pi(isList#) = [] pi(activate) = [] pi(and#) = [] pi(isNeList) = [] pi(tt) = [] pi(isList) = [] pi(isNePal) = [] pi(isQid) = [] pi(and) = [] pi(n__isPal) = [] pi(__) = [1, 2] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> activate#(V2) p3: activate#(n__isList(X)) -> isList#(X) p4: isList#(n____(V1,V2)) -> activate#(V2) p5: activate#(n____(X1,X2)) -> activate#(X2) p6: activate#(n____(X1,X2)) -> activate#(X1) p7: isList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isList#(V) -> activate#(V) p9: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p10: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p3: isList#(V) -> activate#(V) p4: activate#(n____(X1,X2)) -> activate#(X1) p5: activate#(n____(X1,X2)) -> activate#(X2) p6: activate#(n__isList(X)) -> isList#(X) p7: isList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p10: and#(tt(),X) -> activate#(X) p11: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p12: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,0)) x1 + (9,1) n__isNeList_A(x1) = ((0,0),(0,1)) x1 + (0,2) isNeList#_A(x1) = ((0,1),(0,0)) x1 + (5,1) n_____A(x1,x2) = x1 + x2 + (8,8) isList#_A(x1) = ((0,1),(0,0)) x1 + (10,1) activate_A(x1) = ((1,1),(0,1)) x1 + (3,0) n__isList_A(x1) = ((0,0),(0,1)) x1 + (1,2) and#_A(x1,x2) = ((0,1),(0,0)) x2 + (10,1) isNeList_A(x1) = ((0,1),(0,1)) x1 + (0,2) tt_A() = (0,0) isNePal_A(x1) = ((0,1),(0,0)) x1 + (2,12) isQid_A(x1) = (0,0) and_A(x1,x2) = ((1,1),(0,1)) x2 + (4,0) n__isPal_A(x1) = ((0,1),(0,0)) x1 + (2,12) ___A(x1,x2) = x1 + x2 + (9,8) nil_A() = (2,1) isList_A(x1) = ((0,1),(0,1)) x1 + (2,2) n__nil_A() = (1,1) isPal_A(x1) = ((0,1),(0,0)) x1 + (2,12) n__a_A() = (1,1) n__e_A() = (1,1) n__i_A() = (1,1) n__o_A() = (1,1) n__u_A() = (1,1) a_A() = (2,1) e_A() = (1,1) i_A() = (4,1) o_A() = (2,1) u_A() = (1,1) precedence: n__a = a > n__nil > isNeList# > n__isPal = isPal > n__e = e > and# > activate# > isNePal > n__u = u > n____ = activate = __ = i > isList > isNeList > and > n__o = o > tt = isQid = nil > isList# > n__isNeList = n__isList = n__i partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [] pi(isList#) = [] pi(activate) = [1] pi(n__isList) = [] pi(and#) = [] pi(isNeList) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(and) = [] pi(n__isPal) = [] pi(__) = [] pi(nil) = [] pi(isList) = [] pi(n__nil) = [] pi(isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p3: isList#(V) -> activate#(V) p4: activate#(n____(X1,X2)) -> activate#(X1) p5: activate#(n____(X1,X2)) -> activate#(X2) p6: activate#(n__isList(X)) -> isList#(X) p7: isList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: and#(tt(),X) -> activate#(X) p10: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p11: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> activate#(V2) p3: activate#(n__isList(X)) -> isList#(X) p4: isList#(n____(V1,V2)) -> activate#(V2) p5: activate#(n____(X1,X2)) -> activate#(X2) p6: activate#(n____(X1,X2)) -> activate#(X1) p7: isList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isList#(V) -> activate#(V) p9: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p10: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,0),(0,0)) x1 n__isNeList_A(x1) = ((1,0),(0,0)) x1 + (4,4) isNeList#_A(x1) = ((1,0),(0,0)) x1 + (3,0) n_____A(x1,x2) = x1 + x2 + (14,15) n__isList_A(x1) = ((1,0),(0,0)) x1 + (5,5) isList#_A(x1) = ((1,0),(0,0)) x1 + (1,0) activate_A(x1) = ((1,0),(1,1)) x1 + (0,5) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,1)) x2 + (8,5) tt_A() = (2,4) isNePal_A(x1) = ((1,0),(1,0)) x1 + (7,4) isQid_A(x1) = (3,4) n__isPal_A(x1) = ((1,0),(0,0)) x1 + (23,4) n__a_A() = (3,2) n__e_A() = (3,1) n__i_A() = (1,1) n__o_A() = (1,0) n__u_A() = (3,1) ___A(x1,x2) = x1 + x2 + (14,15) nil_A() = (1,1) isList_A(x1) = ((1,0),(1,0)) x1 + (5,5) isNeList_A(x1) = ((1,0),(1,0)) x1 + (4,4) n__nil_A() = (1,1) isPal_A(x1) = ((1,0),(1,0)) x1 + (23,4) a_A() = (3,2) e_A() = (3,1) i_A() = (1,1) o_A() = (1,0) u_A() = (3,2) precedence: n__isList = activate = and = tt = isNePal = isQid = n__isPal = nil = isList = isNeList = n__nil = isPal = a = e = i = o = u > n__isNeList = n____ = n__i = n__o = __ > activate# = isNeList# = isList# = n__a = n__e = n__u partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [1, 2] pi(n__isList) = [] pi(isList#) = [] pi(activate) = [] pi(and) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [1, 2] pi(nil) = [] pi(isList) = [] pi(isNeList) = [] pi(n__nil) = [] pi(isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> activate#(V2) p3: activate#(n__isList(X)) -> isList#(X) p4: isList#(n____(V1,V2)) -> activate#(V2) p5: activate#(n____(X1,X2)) -> activate#(X2) p6: activate#(n____(X1,X2)) -> activate#(X1) p7: isList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p9: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p3: isList#(n____(V1,V2)) -> isList#(activate(V1)) p4: isList#(n____(V1,V2)) -> activate#(V2) p5: activate#(n____(X1,X2)) -> activate#(X1) p6: activate#(n____(X1,X2)) -> activate#(X2) p7: activate#(n__isList(X)) -> isList#(X) p8: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p9: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,0)) x1 + (9,0) n__isNeList_A(x1) = ((0,0),(0,1)) x1 isNeList#_A(x1) = ((0,1),(0,0)) x1 + (8,0) n_____A(x1,x2) = x1 + x2 + (7,6) isList#_A(x1) = ((0,1),(0,0)) x1 + (4,0) activate_A(x1) = ((1,1),(0,1)) x1 + (6,0) n__isList_A(x1) = ((0,0),(0,1)) x1 + (5,0) and_A(x1,x2) = ((1,1),(0,1)) x2 + (6,0) tt_A() = (2,0) isNePal_A(x1) = (34,13) isQid_A(x1) = (3,0) n__isPal_A(x1) = (15,13) n__a_A() = (3,1) n__e_A() = (1,1) n__i_A() = (3,1) n__o_A() = (3,1) n__u_A() = (1,1) ___A(x1,x2) = x1 + x2 + (7,6) nil_A() = (2,0) isList_A(x1) = ((0,1),(0,1)) x1 + (11,0) isNeList_A(x1) = ((0,1),(0,1)) x1 + (6,0) n__nil_A() = (1,0) isPal_A(x1) = (34,13) a_A() = (4,1) e_A() = (2,1) i_A() = (4,1) o_A() = (4,1) u_A() = (2,1) precedence: n__nil > activate = n__isList = and = tt = isNePal = n__e = n__i = n__u = nil = isList = isNeList = isPal = e > n__isNeList > activate# = isNeList# = isList# > n__isPal > n__a = n__o > isQid = __ > n____ = a = i = u > o partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [2] pi(isList#) = [] pi(activate) = [] pi(n__isList) = [] pi(and) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [1, 2] pi(nil) = [] pi(isList) = [] pi(isNeList) = [] pi(n__nil) = [] pi(isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p3: isList#(n____(V1,V2)) -> activate#(V2) p4: activate#(n____(X1,X2)) -> activate#(X1) p5: activate#(n____(X1,X2)) -> activate#(X2) p6: activate#(n__isList(X)) -> isList#(X) p7: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> activate#(V2) p3: activate#(n__isList(X)) -> isList#(X) p4: isList#(n____(V1,V2)) -> activate#(V2) p5: activate#(n____(X1,X2)) -> activate#(X2) p6: activate#(n____(X1,X2)) -> activate#(X1) p7: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,1)) x1 + (1,1) n__isNeList_A(x1) = ((0,1),(1,1)) x1 + (3,2) isNeList#_A(x1) = ((1,1),(0,1)) x1 + (1,0) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,10) n__isList_A(x1) = ((0,1),(1,1)) x1 + (4,3) isList#_A(x1) = ((0,1),(0,1)) x1 + (1,4) activate_A(x1) = x1 and_A(x1,x2) = ((0,1),(1,1)) x1 + x2 + (7,0) tt_A() = (2,2) isNePal_A(x1) = ((1,1),(1,1)) x1 + (4,4) isQid_A(x1) = (3,2) n__isPal_A(x1) = ((1,1),(1,1)) x1 + (5,21) n__a_A() = (1,1) n__e_A() = (1,1) n__i_A() = (1,1) n__o_A() = (1,1) n__u_A() = (1,1) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,10) nil_A() = (1,0) isList_A(x1) = ((0,1),(1,1)) x1 + (4,3) isNeList_A(x1) = ((0,1),(1,1)) x1 + (3,2) n__nil_A() = (1,0) isPal_A(x1) = ((1,1),(1,1)) x1 + (5,21) a_A() = (1,1) e_A() = (1,1) i_A() = (1,1) o_A() = (1,1) u_A() = (1,1) precedence: n__u = u > n__i = i > n__isList = isList > n__isNeList = activate = isNeList > and > n__e = e > n____ = __ > activate# = isNeList# = isList# > isNePal = n__isPal = isPal > n__a = a > tt = isQid = n__o = o > nil = n__nil partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [1] pi(n____) = [1, 2] pi(n__isList) = [] pi(isList#) = [] pi(activate) = [1] pi(and) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [1, 2] pi(nil) = [] pi(isList) = [] pi(isNeList) = [] pi(n__nil) = [] pi(isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> activate#(V2) p2: activate#(n__isList(X)) -> isList#(X) p3: isList#(n____(V1,V2)) -> activate#(V2) p4: activate#(n____(X1,X2)) -> activate#(X2) p5: activate#(n____(X1,X2)) -> activate#(X1) p6: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p7: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p6} {p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNeList#_A(x1) = ((1,1),(1,1)) x1 + (5,2) n_____A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (4,1) activate_A(x1) = x1 and_A(x1,x2) = ((1,1),(0,1)) x2 + (1,0) tt_A() = (2,0) isNePal_A(x1) = ((1,1),(0,1)) x1 + (7,1) isQid_A(x1) = (3,0) n__isPal_A(x1) = ((1,1),(0,1)) x1 + (7,1) n__a_A() = (1,1) n__e_A() = (1,1) n__i_A() = (1,0) n__o_A() = (3,1) n__u_A() = (1,1) ___A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (4,1) nil_A() = (1,1) isList_A(x1) = ((0,1),(0,0)) x1 + (5,0) isNeList_A(x1) = ((0,1),(0,0)) x1 + (5,0) n__nil_A() = (1,1) n__isList_A(x1) = ((0,1),(0,0)) x1 + (5,0) n__isNeList_A(x1) = ((0,1),(0,0)) x1 + (5,0) isPal_A(x1) = ((1,1),(0,1)) x1 + (7,1) a_A() = (1,1) e_A() = (1,1) i_A() = (1,0) o_A() = (3,1) u_A() = (1,1) precedence: isNeList# = n____ = activate = and = tt = isNePal = isQid = n__isPal = n__a = n__e = n__i = n__o = n__u = __ = nil = isList = isNeList = n__nil = n__isList = n__isNeList = isPal = a = e = i = o = u partial status: pi(isNeList#) = [] pi(n____) = [] pi(activate) = [] pi(and) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [] pi(nil) = [] pi(isList) = [] pi(isNeList) = [] pi(n__nil) = [] pi(n__isList) = [] pi(n__isNeList) = [] pi(isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isList(X)) -> isList#(X) p2: isList#(n____(V1,V2)) -> activate#(V2) p3: activate#(n____(X1,X2)) -> activate#(X1) p4: activate#(n____(X1,X2)) -> activate#(X2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = x1 + (1,1) n__isList_A(x1) = ((1,1),(1,1)) x1 + (2,1) isList#_A(x1) = ((1,1),(0,1)) x1 + (1,1) n_____A(x1,x2) = x1 + x2 + (2,1) precedence: n____ > n__isList = isList# > activate# partial status: pi(activate#) = [1] pi(n__isList) = [] pi(isList#) = [] pi(n____) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isList#(n____(V1,V2)) -> activate#(V2) p2: activate#(n____(X1,X2)) -> activate#(X1) p3: activate#(n____(X1,X2)) -> activate#(X2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n____(X1,X2)) -> activate#(X1) p2: activate#(n____(X1,X2)) -> activate#(X2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,0)) x1 + (2,2) n_____A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,1) precedence: activate# = n____ partial status: pi(activate#) = [] pi(n____) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n____(X1,X2)) -> activate#(X1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n____(X1,X2)) -> activate#(X1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = x1 + (1,1) n_____A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (2,1) precedence: n____ > activate# partial status: pi(activate#) = [1] pi(n____) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: __#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) ___A(x1,x2) = x1 + x2 + (2,1) nil_A() = (1,1) n_____A(x1,x2) = (1,1) precedence: __ > __# = nil = n____ partial status: pi(__#) = [1] pi(__) = [] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,n____(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: __#_A(x1,x2) = ((1,1),(0,1)) x1 + (2,2) ___A(x1,x2) = x1 + x2 + (1,1) nil_A() = (1,1) n_____A(x1,x2) = (0,0) precedence: __ > __# = nil = n____ partial status: pi(__#) = [1] pi(__) = [] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.