YES We show the termination of the TRS R: __(__(X,Y),Z) -> __(X,__(Y,Z)) __(X,nil()) -> X __(nil(),X) -> X and(tt(),X) -> activate(X) isList(V) -> isNeList(activate(V)) isList(n__nil()) -> tt() isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) isNeList(V) -> isQid(activate(V)) isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) isNePal(V) -> isQid(activate(V)) isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) isPal(V) -> isNePal(activate(V)) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() __(X1,X2) -> n____(X1,X2) isList(X) -> n__isList(X) isNeList(X) -> n__isNeList(X) isPal(X) -> n__isPal(X) a() -> n__a() e() -> n__e() i() -> n__i() o() -> n__o() u() -> n__u() activate(n__nil()) -> nil() activate(n____(X1,X2)) -> __(X1,X2) activate(n__isList(X)) -> isList(X) activate(n__isNeList(X)) -> isNeList(X) activate(n__isPal(X)) -> isPal(X) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__o()) -> o() activate(n__u()) -> u() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) p3: and#(tt(),X) -> activate#(X) p4: isList#(V) -> isNeList#(activate(V)) p5: isList#(V) -> activate#(V) p6: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p7: isList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isList#(n____(V1,V2)) -> activate#(V1) p9: isList#(n____(V1,V2)) -> activate#(V2) p10: isNeList#(V) -> isQid#(activate(V)) p11: isNeList#(V) -> activate#(V) p12: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p13: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p14: isNeList#(n____(V1,V2)) -> activate#(V1) p15: isNeList#(n____(V1,V2)) -> activate#(V2) p16: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p17: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p18: isNeList#(n____(V1,V2)) -> activate#(V1) p19: isNeList#(n____(V1,V2)) -> activate#(V2) p20: isNePal#(V) -> isQid#(activate(V)) p21: isNePal#(V) -> activate#(V) p22: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p23: isNePal#(n____(I,__(P,I))) -> isQid#(activate(I)) p24: isNePal#(n____(I,__(P,I))) -> activate#(I) p25: isNePal#(n____(I,__(P,I))) -> activate#(P) p26: isPal#(V) -> isNePal#(activate(V)) p27: isPal#(V) -> activate#(V) p28: activate#(n__nil()) -> nil#() p29: activate#(n____(X1,X2)) -> __#(X1,X2) p30: activate#(n__isList(X)) -> isList#(X) p31: activate#(n__isNeList(X)) -> isNeList#(X) p32: activate#(n__isPal(X)) -> isPal#(X) p33: activate#(n__a()) -> a#() p34: activate#(n__e()) -> e#() p35: activate#(n__i()) -> i#() p36: activate#(n__o()) -> o#() p37: activate#(n__u()) -> u#() and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3, p4, p5, p6, p7, p8, p9, p11, p12, p13, p14, p15, p16, p17, p18, p19, p21, p22, p24, p25, p26, p27, p30, p31, p32} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,__(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: activate#(n__isList(X)) -> isList#(X) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: isList#(n____(V1,V2)) -> activate#(V1) p10: isList#(n____(V1,V2)) -> isList#(activate(V1)) p11: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p12: and#(tt(),X) -> activate#(X) p13: isList#(V) -> activate#(V) p14: isList#(V) -> isNeList#(activate(V)) p15: isNeList#(n____(V1,V2)) -> activate#(V1) p16: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p17: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p18: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p19: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p20: isNeList#(V) -> activate#(V) p21: isNePal#(n____(I,__(P,I))) -> activate#(I) p22: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p23: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((0,1),(0,1)) x1 + (8,8) activate#_A(x1) = ((0,1),(0,1)) x1 n__isPal_A(x1) = ((0,0),(0,1)) x1 + (5,39) isNePal#_A(x1) = ((0,1),(0,1)) x1 + (0,1) activate_A(x1) = x1 + (29,7) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (31,26) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (53,27) n__isNeList_A(x1) = ((0,0),(0,1)) x1 + (3,13) isNeList#_A(x1) = ((0,1),(0,1)) x1 + (4,0) n__isList_A(x1) = ((0,0),(0,1)) x1 + (3,13) isList#_A(x1) = ((0,1),(0,1)) x1 + (12,13) and#_A(x1,x2) = ((1,1),(1,1)) x2 + (1,3) isList_A(x1) = ((0,0),(0,1)) x1 + (32,20) tt_A() = (30,2) isNeList_A(x1) = ((0,0),(0,1)) x1 + (32,13) isQid_A(x1) = (31,6) isNePal_A(x1) = ((0,0),(0,1)) x1 + (34,6) and_A(x1,x2) = x2 + (29,7) nil_A() = (2,2) isPal_A(x1) = ((0,0),(0,1)) x1 + (34,39) n__nil_A() = (1,1) a_A() = (32,3) n__a_A() = (31,2) e_A() = (32,3) n__e_A() = (31,2) i_A() = (32,3) n__i_A() = (31,2) o_A() = (31,2) n__o_A() = (31,2) u_A() = (32,3) n__u_A() = (31,2) precedence: n__i > isPal# = activate# = isNePal# = isNeList# = n__isList = isList# = and# > activate = isList = isNeList = isNePal = and = nil = isPal = n__nil = a > n__isNeList > __ > n____ > n__isPal > tt = n__a = e = n__e = i = o = n__o > isQid = u = n__u partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isPal) = [] pi(isNePal#) = [] pi(activate) = [] pi(n____) = [1, 2] pi(__) = [1, 2] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n__isList) = [] pi(isList#) = [] pi(and#) = [] pi(isList) = [] pi(tt) = [] pi(isNeList) = [] pi(isQid) = [] pi(isNePal) = [] pi(and) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,__(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: activate#(n__isList(X)) -> isList#(X) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: isList#(n____(V1,V2)) -> activate#(V1) p10: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: isList#(V) -> activate#(V) p13: isList#(V) -> isNeList#(activate(V)) p14: isNeList#(n____(V1,V2)) -> activate#(V1) p15: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p16: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p17: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p18: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p19: isNeList#(V) -> activate#(V) p20: isNePal#(n____(I,__(P,I))) -> activate#(I) p21: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p22: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isList(X)) -> isList#(X) p3: isList#(V) -> isNeList#(activate(V)) p4: isNeList#(V) -> activate#(V) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p7: and#(tt(),X) -> activate#(X) p8: activate#(n__isPal(X)) -> isPal#(X) p9: isPal#(V) -> isNePal#(activate(V)) p10: isNePal#(V) -> activate#(V) p11: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p12: isNePal#(n____(I,__(P,I))) -> activate#(I) p13: isNePal#(n____(I,__(P,I))) -> activate#(P) p14: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p15: isList#(V) -> activate#(V) p16: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p17: isList#(n____(V1,V2)) -> activate#(V1) p18: isList#(n____(V1,V2)) -> activate#(V2) p19: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p20: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p21: isNeList#(n____(V1,V2)) -> activate#(V1) p22: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((1,0),(1,1)) x1 + (84,8) activate#_A(x1) = ((1,0),(1,0)) x1 + (46,0) n__isList_A(x1) = ((1,1),(0,0)) x1 + (12,1) isList#_A(x1) = ((1,1),(1,1)) x1 + (57,8) isNeList#_A(x1) = ((1,1),(1,1)) x1 + (47,0) activate_A(x1) = x1 + (5,3) n__isNeList_A(x1) = ((1,1),(0,0)) x1 + (3,1) n_____A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (22,7) and#_A(x1,x2) = ((1,0),(1,0)) x2 + (47,0) isList_A(x1) = ((1,1),(0,0)) x1 + (13,4) tt_A() = (0,2) n__isPal_A(x1) = ((1,1),(0,0)) x1 + (38,61) isNePal#_A(x1) = ((1,0),(1,1)) x1 + (49,0) ___A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (23,8) isQid_A(x1) = (0,4) isNeList_A(x1) = ((1,1),(0,0)) x1 + (4,4) isNePal_A(x1) = ((1,1),(0,0)) x1 + (1,64) and_A(x1,x2) = x2 + (12,3) nil_A() = (2,3) isPal_A(x1) = ((1,1),(0,0)) x1 + (39,64) n__nil_A() = (1,2) a_A() = (2,3) n__a_A() = (1,2) e_A() = (2,3) n__e_A() = (1,2) i_A() = (2,3) n__i_A() = (1,2) o_A() = (2,2) n__o_A() = (1,1) u_A() = (2,3) n__u_A() = (1,2) precedence: isNePal# > isPal# = activate# = n__isList = isList# = isNeList# = and# = __ = isNePal = nil = n__nil > isList > isNeList > activate = and > n__isNeList > n__isPal = isPal > n__e > n____ = tt = isQid = a = e = n__i = o = n__o = u = n__u > i > n__a partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isList) = [] pi(isList#) = [] pi(isNeList#) = [] pi(activate) = [1] pi(n__isNeList) = [] pi(n____) = [] pi(and#) = [] pi(isList) = [] pi(tt) = [] pi(n__isPal) = [] pi(isNePal#) = [1] pi(__) = [1, 2] pi(isQid) = [] pi(isNeList) = [] pi(isNePal) = [] pi(and) = [2] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: isList#(V) -> isNeList#(activate(V)) p3: isNeList#(V) -> activate#(V) p4: activate#(n__isNeList(X)) -> isNeList#(X) p5: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__isPal(X)) -> isPal#(X) p8: isPal#(V) -> isNePal#(activate(V)) p9: isNePal#(V) -> activate#(V) p10: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p11: isNePal#(n____(I,__(P,I))) -> activate#(I) p12: isNePal#(n____(I,__(P,I))) -> activate#(P) p13: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p14: isList#(V) -> activate#(V) p15: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p16: isList#(n____(V1,V2)) -> activate#(V1) p17: isList#(n____(V1,V2)) -> activate#(V2) p18: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p19: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p20: isNeList#(n____(V1,V2)) -> activate#(V1) p21: isNeList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,__(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: isNeList#(n____(V1,V2)) -> activate#(V1) p8: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p9: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p10: and#(tt(),X) -> activate#(X) p11: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p12: isList#(n____(V1,V2)) -> activate#(V2) p13: isList#(n____(V1,V2)) -> activate#(V1) p14: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p15: isList#(V) -> activate#(V) p16: isList#(V) -> isNeList#(activate(V)) p17: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p18: isNeList#(V) -> activate#(V) p19: isNePal#(n____(I,__(P,I))) -> activate#(I) p20: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPal(activate(P))) p21: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((0,1),(0,0)) x1 + (79,4) activate#_A(x1) = ((0,1),(0,0)) x1 + (3,4) n__isPal_A(x1) = ((0,1),(0,1)) x1 + (235,157) isNePal#_A(x1) = ((0,1),(0,0)) x1 + (77,4) activate_A(x1) = x1 + (10,1) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (116,79) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (117,79) n__isNeList_A(x1) = ((1,1),(0,1)) x1 + (5,2) isNeList#_A(x1) = ((0,1),(0,0)) x1 + (4,4) and#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (74,4) isNeList_A(x1) = ((1,1),(0,1)) x1 + (9,3) n__isList_A(x1) = ((1,1),(0,1)) x1 + (75,3) tt_A() = (2,2) isList#_A(x1) = ((0,1),(0,0)) x1 + (6,4) isList_A(x1) = ((1,1),(0,1)) x1 + (76,4) isQid_A(x1) = ((0,0),(0,1)) x1 + (3,1) isNePal_A(x1) = ((0,1),(0,1)) x1 + (91,2) and_A(x1,x2) = ((1,1),(0,0)) x1 + x2 + (7,1) nil_A() = (1,1) isPal_A(x1) = ((0,1),(0,1)) x1 + (236,157) n__nil_A() = (0,0) a_A() = (4,1) n__a_A() = (3,1) e_A() = (4,3) n__e_A() = (3,2) i_A() = (12,2) n__i_A() = (3,2) o_A() = (3,2) n__o_A() = (3,2) u_A() = (2,1) n__u_A() = (1,1) precedence: n__nil > isPal# = n__u > isNePal# > isNeList > n__isPal = activate = n____ = __ = isNePal = nil = isPal = a = n__a = i = u > n__isNeList = and > n__isList > o > e = n__e > activate# = isNeList# = and# = tt = isList# = isList = isQid = n__i = n__o partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isPal) = [] pi(isNePal#) = [] pi(activate) = [] pi(n____) = [] pi(__) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(and#) = [] pi(isNeList) = [] pi(n__isList) = [1] pi(tt) = [] pi(isList#) = [] pi(isList) = [1] pi(isQid) = [] pi(isNePal) = [] pi(and) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] The next rules are strictly ordered: p20 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,__(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: isNeList#(n____(V1,V2)) -> activate#(V1) p8: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p9: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p10: and#(tt(),X) -> activate#(X) p11: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p12: isList#(n____(V1,V2)) -> activate#(V2) p13: isList#(n____(V1,V2)) -> activate#(V1) p14: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p15: isList#(V) -> activate#(V) p16: isList#(V) -> isNeList#(activate(V)) p17: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p18: isNeList#(V) -> activate#(V) p19: isNePal#(n____(I,__(P,I))) -> activate#(I) p20: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isNeList(X)) -> isNeList#(X) p3: isNeList#(V) -> activate#(V) p4: activate#(n__isPal(X)) -> isPal#(X) p5: isPal#(V) -> isNePal#(activate(V)) p6: isNePal#(V) -> activate#(V) p7: isNePal#(n____(I,__(P,I))) -> activate#(I) p8: isNePal#(n____(I,__(P,I))) -> activate#(P) p9: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p10: and#(tt(),X) -> activate#(X) p11: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p12: isList#(V) -> isNeList#(activate(V)) p13: isNeList#(n____(V1,V2)) -> and#(isNeList(activate(V1)),n__isList(activate(V2))) p14: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p15: isNeList#(n____(V1,V2)) -> activate#(V1) p16: isNeList#(n____(V1,V2)) -> activate#(V2) p17: isList#(V) -> activate#(V) p18: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p19: isList#(n____(V1,V2)) -> activate#(V1) p20: isList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((0,1),(0,1)) x1 + (15,1) activate#_A(x1) = ((0,1),(0,1)) x1 + (13,1) n__isNeList_A(x1) = ((0,1),(0,1)) x1 + (9,2) isNeList#_A(x1) = ((0,1),(0,1)) x1 + (14,3) n__isPal_A(x1) = ((1,1),(1,1)) x1 + (14,8) isNePal#_A(x1) = ((0,1),(0,1)) x1 + (14,1) activate_A(x1) = x1 + (7,0) n_____A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (8,0) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (10,0) and#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,1)) x2 + (10,1) isList_A(x1) = ((0,1),(0,1)) x1 + (13,2) tt_A() = (4,7) isList#_A(x1) = ((0,1),(0,1)) x1 + (14,3) isNeList_A(x1) = ((0,1),(0,1)) x1 + (13,2) n__isList_A(x1) = ((0,1),(0,1)) x1 + (7,2) isNePal_A(x1) = ((1,1),(1,1)) x1 + (6,1) isQid_A(x1) = ((0,0),(0,1)) x1 + (5,1) and_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (1,0) nil_A() = (2,5) isPal_A(x1) = ((1,1),(1,1)) x1 + (14,8) n__nil_A() = (1,5) n__a_A() = (1,6) n__e_A() = (5,6) n__i_A() = (1,6) n__o_A() = (1,6) n__u_A() = (5,6) a_A() = (2,6) e_A() = (6,6) i_A() = (1,6) o_A() = (1,6) u_A() = (6,6) precedence: activate# > isNeList# = isList# > n__isPal = isNePal = isPal > n__isNeList = activate = n____ = __ = isList = isNeList > and > isQid > isPal# > isNePal# > n__isList = n__nil > and# = nil > n__a > tt = n__e = n__i = n__u = a = e = i = o = u > n__o partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n__isPal) = [] pi(isNePal#) = [] pi(activate) = [1] pi(n____) = [] pi(__) = [1, 2] pi(and#) = [] pi(isList) = [] pi(tt) = [] pi(isList#) = [] pi(isNeList) = [] pi(n__isList) = [] pi(isNePal) = [] pi(isQid) = [] pi(and) = [] pi(nil) = [] pi(isPal) = [] pi(n__nil) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isNeList(X)) -> isNeList#(X) p3: isNeList#(V) -> activate#(V) p4: activate#(n__isPal(X)) -> isPal#(X) p5: isPal#(V) -> isNePal#(activate(V)) p6: isNePal#(V) -> activate#(V) p7: isNePal#(n____(I,__(P,I))) -> activate#(I) p8: isNePal#(n____(I,__(P,I))) -> activate#(P) p9: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p10: and#(tt(),X) -> activate#(X) p11: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p12: isList#(V) -> isNeList#(activate(V)) p13: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p14: isNeList#(n____(V1,V2)) -> activate#(V1) p15: isNeList#(n____(V1,V2)) -> activate#(V2) p16: isList#(V) -> activate#(V) p17: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p18: isList#(n____(V1,V2)) -> activate#(V1) p19: isList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: isNePal#(n____(I,__(P,I))) -> activate#(P) p5: activate#(n__isNeList(X)) -> isNeList#(X) p6: isNeList#(n____(V1,V2)) -> activate#(V2) p7: isNeList#(n____(V1,V2)) -> activate#(V1) p8: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p9: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p10: isList#(n____(V1,V2)) -> activate#(V2) p11: isList#(n____(V1,V2)) -> activate#(V1) p12: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p13: and#(tt(),X) -> activate#(X) p14: isList#(V) -> activate#(V) p15: isList#(V) -> isNeList#(activate(V)) p16: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p17: isNeList#(V) -> activate#(V) p18: isNePal#(n____(I,__(P,I))) -> activate#(I) p19: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((1,1),(0,0)) x1 + (31,42) activate#_A(x1) = ((0,1),(0,0)) x1 + (10,42) n__isPal_A(x1) = ((0,1),(1,1)) x1 + (17,22) isNePal#_A(x1) = ((1,1),(0,0)) x1 + (11,42) activate_A(x1) = x1 + (16,3) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (10,41) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (25,41) n__isNeList_A(x1) = ((0,1),(0,1)) x1 + (8,2) isNeList#_A(x1) = ((0,1),(0,0)) x1 + (11,42) isList#_A(x1) = ((0,1),(0,0)) x1 + (15,42) and#_A(x1,x2) = ((0,1),(0,0)) x2 + (11,42) isList_A(x1) = ((0,1),(0,1)) x1 + (12,16) n__isList_A(x1) = ((0,1),(0,1)) x1 + (8,16) tt_A() = (0,1) isNePal_A(x1) = ((0,1),(1,0)) x1 + (14,9) isQid_A(x1) = (0,1) and_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (16,2) n__a_A() = (1,1) n__e_A() = (1,1) n__i_A() = (1,1) n__o_A() = (1,1) n__u_A() = (1,1) nil_A() = (16,1) isNeList_A(x1) = ((0,1),(0,1)) x1 + (8,2) isPal_A(x1) = ((0,1),(1,1)) x1 + (17,25) n__nil_A() = (1,1) a_A() = (2,2) e_A() = (2,2) i_A() = (2,2) o_A() = (2,2) u_A() = (1,1) precedence: isPal# = activate# = isNePal# = isNeList# = isList# = and# = isList = n__isList > n__isNeList = isNePal = and = isNeList = isPal > tt = isQid > n__isPal > activate = n____ = __ > n__a = n__e = a > nil = n__nil = e > n__o = o > n__i = i > n__u = u partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isPal) = [] pi(isNePal#) = [] pi(activate) = [1] pi(n____) = [1, 2] pi(__) = [1, 2] pi(n__isNeList) = [] pi(isNeList#) = [] pi(isList#) = [] pi(and#) = [] pi(isList) = [] pi(n__isList) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(and) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isNeList) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: isPal#(V) -> isNePal#(activate(V)) p4: activate#(n__isNeList(X)) -> isNeList#(X) p5: isNeList#(n____(V1,V2)) -> activate#(V2) p6: isNeList#(n____(V1,V2)) -> activate#(V1) p7: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p9: isList#(n____(V1,V2)) -> activate#(V2) p10: isList#(n____(V1,V2)) -> activate#(V1) p11: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p12: and#(tt(),X) -> activate#(X) p13: isList#(V) -> activate#(V) p14: isList#(V) -> isNeList#(activate(V)) p15: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p16: isNeList#(V) -> activate#(V) p17: isNePal#(n____(I,__(P,I))) -> activate#(I) p18: isNePal#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isNeList(X)) -> isNeList#(X) p3: isNeList#(V) -> activate#(V) p4: activate#(n__isPal(X)) -> isPal#(X) p5: isPal#(V) -> isNePal#(activate(V)) p6: isNePal#(V) -> activate#(V) p7: isNePal#(n____(I,__(P,I))) -> activate#(I) p8: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p9: and#(tt(),X) -> activate#(X) p10: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p11: isList#(V) -> isNeList#(activate(V)) p12: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p13: isNeList#(n____(V1,V2)) -> activate#(V1) p14: isNeList#(n____(V1,V2)) -> activate#(V2) p15: isList#(V) -> activate#(V) p16: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p17: isList#(n____(V1,V2)) -> activate#(V1) p18: isList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = ((1,1),(1,1)) x1 + (79,72) activate#_A(x1) = ((1,1),(1,1)) x1 + (68,16) n__isNeList_A(x1) = ((0,1),(1,0)) x1 + (1,13) isNeList#_A(x1) = ((1,1),(1,1)) x1 + (69,30) n__isPal_A(x1) = ((0,1),(1,0)) x1 + (66,71) isNePal#_A(x1) = ((1,1),(1,1)) x1 + (69,16) activate_A(x1) = x1 + (7,2) n_____A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (33,38) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (34,39) and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(1,1)) x2 + (68,16) isList_A(x1) = ((0,1),(1,0)) x1 + (6,21) tt_A() = (1,1) isList#_A(x1) = ((1,1),(1,1)) x1 + (79,39) n__isList_A(x1) = ((0,1),(1,0)) x1 + (6,21) isNePal_A(x1) = ((0,1),(1,0)) x1 + (6,30) isQid_A(x1) = ((0,0),(1,0)) x1 + (2,0) and_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (7,19) n__a_A() = (2,1) n__e_A() = (2,1) n__i_A() = (2,1) n__o_A() = (2,1) n__u_A() = (2,1) nil_A() = (3,1) isNeList_A(x1) = ((0,1),(1,0)) x1 + (3,14) isPal_A(x1) = ((0,1),(1,0)) x1 + (67,72) n__nil_A() = (2,1) a_A() = (3,2) e_A() = (3,2) i_A() = (3,2) o_A() = (3,2) u_A() = (3,2) precedence: n__isNeList > isPal# = activate# = isNeList# = activate = __ = and# = isList = isList# = n__isList = isNePal = isQid = and = n__u = isPal = a = e > n__isPal = isNePal# = n____ = n__a = n__e > tt = n__i = n__o = nil = isNeList = n__nil = i = o = u partial status: pi(isPal#) = [] pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n__isPal) = [] pi(isNePal#) = [1] pi(activate) = [] pi(n____) = [1] pi(__) = [1, 2] pi(and#) = [] pi(isList) = [] pi(tt) = [] pi(isList#) = [] pi(n__isList) = [] pi(isNePal) = [] pi(isQid) = [] pi(and) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isNeList) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isNeList(X)) -> isNeList#(X) p3: isNeList#(V) -> activate#(V) p4: activate#(n__isPal(X)) -> isPal#(X) p5: isNePal#(V) -> activate#(V) p6: isNePal#(n____(I,__(P,I))) -> activate#(I) p7: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p8: and#(tt(),X) -> activate#(X) p9: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p10: isList#(V) -> isNeList#(activate(V)) p11: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p12: isNeList#(n____(V1,V2)) -> activate#(V1) p13: isNeList#(n____(V1,V2)) -> activate#(V2) p14: isList#(V) -> activate#(V) p15: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p16: isList#(n____(V1,V2)) -> activate#(V1) p17: isList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(V) -> activate#(V) p2: activate#(n__isPal(X)) -> isPal#(X) p3: activate#(n__isNeList(X)) -> isNeList#(X) p4: isNeList#(n____(V1,V2)) -> activate#(V2) p5: isNeList#(n____(V1,V2)) -> activate#(V1) p6: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p7: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p8: isList#(n____(V1,V2)) -> activate#(V2) p9: isList#(n____(V1,V2)) -> activate#(V1) p10: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: isList#(V) -> activate#(V) p13: isList#(V) -> isNeList#(activate(V)) p14: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p15: isNeList#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isPal#_A(x1) = x1 + (35,1) activate#_A(x1) = x1 n__isPal_A(x1) = ((1,1),(1,1)) x1 + (36,30) n__isNeList_A(x1) = ((1,0),(1,1)) x1 + (33,24) isNeList#_A(x1) = ((1,0),(1,1)) x1 + (20,1) n_____A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (16,13) activate_A(x1) = x1 + (3,3) isList#_A(x1) = ((1,0),(1,1)) x1 + (30,7) and#_A(x1,x2) = x2 isList_A(x1) = ((1,0),(1,1)) x1 + (44,33) n__isList_A(x1) = ((1,0),(1,1)) x1 + (42,30) tt_A() = (2,2) isNePal_A(x1) = ((0,1),(1,1)) x1 + (34,27) isQid_A(x1) = (33,27) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (16,13) and_A(x1,x2) = x2 + (4,3) n__a_A() = (1,1) n__e_A() = (0,0) n__i_A() = (1,1) n__o_A() = (1,0) n__u_A() = (0,0) nil_A() = (1,1) isNeList_A(x1) = ((1,0),(1,1)) x1 + (34,27) isPal_A(x1) = ((1,1),(1,1)) x1 + (38,33) n__nil_A() = (0,0) a_A() = (3,2) e_A() = (2,1) i_A() = (3,2) o_A() = (2,3) u_A() = (2,3) precedence: isPal# = n__o > isNeList# = isList# > activate# = activate = and# = isList = isNePal = isQid = and = n__a = nil = isNeList = isPal > tt > n____ = __ > n__isPal = n__isNeList = n__isList = n__u = n__nil > n__e = e = i > o > a = u > n__i partial status: pi(isPal#) = [] pi(activate#) = [1] pi(n__isPal) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [1, 2] pi(activate) = [] pi(isList#) = [1] pi(and#) = [2] pi(isList) = [] pi(n__isList) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [1, 2] pi(and) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isNeList) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isPal(X)) -> isPal#(X) p2: activate#(n__isNeList(X)) -> isNeList#(X) p3: isNeList#(n____(V1,V2)) -> activate#(V2) p4: isNeList#(n____(V1,V2)) -> activate#(V1) p5: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p6: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p7: isList#(n____(V1,V2)) -> activate#(V2) p8: isList#(n____(V1,V2)) -> activate#(V1) p9: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p10: and#(tt(),X) -> activate#(X) p11: isList#(V) -> activate#(V) p12: isList#(V) -> isNeList#(activate(V)) p13: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p14: isNeList#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(V) -> activate#(V) p3: isNeList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isNeList(activate(V2))) p4: and#(tt(),X) -> activate#(X) p5: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p6: isList#(V) -> isNeList#(activate(V)) p7: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> activate#(V1) p9: isNeList#(n____(V1,V2)) -> activate#(V2) p10: isList#(V) -> activate#(V) p11: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p12: isList#(n____(V1,V2)) -> activate#(V1) p13: isList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,0),(0,0)) x1 + (4,2) n__isNeList_A(x1) = ((1,0),(1,1)) x1 + (29,1) isNeList#_A(x1) = ((1,0),(0,0)) x1 + (18,2) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (19,0) and#_A(x1,x2) = ((1,0),(0,0)) x2 + (5,2) isList_A(x1) = ((1,0),(1,1)) x1 + (36,8) activate_A(x1) = x1 + (2,3) tt_A() = (3,0) isList#_A(x1) = ((1,0),(0,0)) x1 + (34,2) n__isList_A(x1) = ((1,0),(1,1)) x1 + (36,5) isNePal_A(x1) = ((1,0),(0,0)) x1 + (5,3) isQid_A(x1) = (4,0) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (19,0) and_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (3,3) n__isPal_A(x1) = ((1,0),(0,0)) x1 + (16,0) n__a_A() = (4,1) n__e_A() = (4,1) n__i_A() = (4,1) n__o_A() = (4,1) n__u_A() = (4,1) nil_A() = (1,2) isNeList_A(x1) = ((1,0),(1,1)) x1 + (30,3) isPal_A(x1) = ((1,0),(0,0)) x1 + (16,3) n__nil_A() = (0,1) a_A() = (5,2) e_A() = (5,2) i_A() = (5,2) o_A() = (5,2) u_A() = (5,2) precedence: activate# = isNeList# = n____ = and# = isList = activate = isList# = isNePal = __ = and = n__a = n__i = n__u = isNeList = isPal = i > n__e > n__isNeList > n__isPal > n__o = a = o > tt > n__isList = isQid = n__nil > nil = e = u partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [] pi(and#) = [] pi(isList) = [] pi(activate) = [] pi(tt) = [] pi(isList#) = [] pi(n__isList) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [] pi(and) = [] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isNeList) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(V) -> activate#(V) p3: and#(tt(),X) -> activate#(X) p4: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p5: isList#(V) -> isNeList#(activate(V)) p6: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p7: isNeList#(n____(V1,V2)) -> activate#(V1) p8: isNeList#(n____(V1,V2)) -> activate#(V2) p9: isList#(V) -> activate#(V) p10: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p11: isList#(n____(V1,V2)) -> activate#(V1) p12: isList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> activate#(V2) p3: isNeList#(n____(V1,V2)) -> activate#(V1) p4: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p5: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p6: isList#(n____(V1,V2)) -> activate#(V2) p7: isList#(n____(V1,V2)) -> activate#(V1) p8: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p9: and#(tt(),X) -> activate#(X) p10: isList#(V) -> activate#(V) p11: isList#(V) -> isNeList#(activate(V)) p12: isNeList#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,0)) x1 + (5,7) n__isNeList_A(x1) = ((0,1),(0,1)) x1 + (1,8) isNeList#_A(x1) = ((0,1),(0,0)) x1 + (12,7) n_____A(x1,x2) = ((1,0),(1,1)) x1 + x2 activate_A(x1) = x1 isList#_A(x1) = ((0,1),(0,0)) x1 + (12,7) and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((0,1),(0,0)) x2 + (2,7) isList_A(x1) = ((0,1),(0,1)) x1 + (1,8) n__isList_A(x1) = ((0,1),(0,1)) x1 + (1,8) tt_A() = (4,6) isNePal_A(x1) = ((0,1),(0,1)) x1 + (1,2) isQid_A(x1) = ((0,1),(0,1)) x1 + (0,2) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 and_A(x1,x2) = x2 n__isPal_A(x1) = ((1,1),(0,1)) x1 + (1,2) n__a_A() = (1,5) n__e_A() = (5,4) n__i_A() = (1,4) n__o_A() = (5,4) n__u_A() = (1,5) nil_A() = (5,6) isNeList_A(x1) = ((0,1),(0,1)) x1 + (1,8) isPal_A(x1) = ((1,1),(0,1)) x1 + (1,2) n__nil_A() = (5,6) a_A() = (1,5) e_A() = (5,4) i_A() = (1,4) o_A() = (5,4) u_A() = (1,5) precedence: activate# = n__isNeList = isNeList# = n____ = activate = isList# = and# = isList = n__isList = tt = isNePal = isQid = __ = and = n__isPal = n__a = n__e = n__i = n__o = n__u = nil = isNeList = isPal = n__nil = a = e = i = o = u partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [] pi(activate) = [] pi(isList#) = [] pi(and#) = [] pi(isList) = [] pi(n__isList) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [] pi(and) = [] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isNeList) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> activate#(V1) p3: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p4: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p5: isList#(n____(V1,V2)) -> activate#(V2) p6: isList#(n____(V1,V2)) -> activate#(V1) p7: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p8: and#(tt(),X) -> activate#(X) p9: isList#(V) -> activate#(V) p10: isList#(V) -> isNeList#(activate(V)) p11: isNeList#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(V) -> activate#(V) p3: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p4: isList#(V) -> isNeList#(activate(V)) p5: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p6: isNeList#(n____(V1,V2)) -> activate#(V1) p7: isList#(V) -> activate#(V) p8: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p9: and#(tt(),X) -> activate#(X) p10: isList#(n____(V1,V2)) -> activate#(V1) p11: isList#(n____(V1,V2)) -> activate#(V2) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,0),(0,0)) x1 n__isNeList_A(x1) = ((1,1),(1,0)) x1 + (5,2) isNeList#_A(x1) = ((1,1),(0,0)) x1 + (1,0) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (63,57) isList#_A(x1) = ((1,1),(0,0)) x1 + (44,0) activate_A(x1) = x1 + (4,16) and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (1,0) isList_A(x1) = ((1,1),(1,0)) x1 + (25,15) n__isList_A(x1) = ((1,1),(1,0)) x1 + (25,15) tt_A() = (2,2) isNePal_A(x1) = ((0,1),(0,0)) x1 + (3,147) isQid_A(x1) = (2,2) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (64,73) and_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (4,14) n__isPal_A(x1) = ((0,1),(0,0)) x1 + (112,131) n__a_A() = (1,1) n__e_A() = (1,1) n__i_A() = (3,1) n__o_A() = (1,1) n__u_A() = (1,1) nil_A() = (3,2) isNeList_A(x1) = ((1,1),(1,0)) x1 + (5,2) isPal_A(x1) = ((0,1),(0,0)) x1 + (116,147) n__nil_A() = (3,2) a_A() = (2,2) e_A() = (2,2) i_A() = (4,2) o_A() = (2,2) u_A() = (2,2) precedence: isList = n__isList > n__isNeList = isNeList > activate = isNePal = and = isPal > __ = n__isPal = n__e = u > n__a > tt = isQid = nil > n__nil > n__i = n__o = a = e = i = o > activate# = isNeList# = n____ = isList# = and# = n__u partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [] pi(isList#) = [] pi(activate) = [1] pi(and#) = [] pi(isList) = [] pi(n__isList) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [1, 2] pi(and) = [2] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isNeList) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(V) -> activate#(V) p3: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p4: isList#(V) -> isNeList#(activate(V)) p5: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p6: isNeList#(n____(V1,V2)) -> activate#(V1) p7: isList#(V) -> activate#(V) p8: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p9: and#(tt(),X) -> activate#(X) p10: isList#(n____(V1,V2)) -> activate#(V1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> activate#(V1) p3: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p4: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p5: isList#(n____(V1,V2)) -> activate#(V1) p6: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p7: and#(tt(),X) -> activate#(X) p8: isList#(V) -> activate#(V) p9: isList#(V) -> isNeList#(activate(V)) p10: isNeList#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,0),(0,0)) x1 n__isNeList_A(x1) = x1 + (3,0) isNeList#_A(x1) = ((1,0),(0,0)) x1 + (3,0) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (22,26) activate_A(x1) = x1 + (5,8) isList#_A(x1) = ((1,0),(0,0)) x1 + (18,0) and#_A(x1,x2) = ((1,0),(0,0)) x2 + (8,0) isList_A(x1) = x1 + (10,10) n__isList_A(x1) = x1 + (10,10) tt_A() = (2,2) isNePal_A(x1) = ((1,0),(1,0)) x1 + (4,2) isQid_A(x1) = (3,2) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (23,26) and_A(x1,x2) = x2 + (6,8) n__isPal_A(x1) = ((1,0),(1,1)) x1 + (17,7) n__a_A() = (1,1) n__e_A() = (1,1) n__i_A() = (1,1) n__o_A() = (1,1) n__u_A() = (1,1) nil_A() = (5,2) isNeList_A(x1) = x1 + (4,2) isPal_A(x1) = ((1,0),(1,1)) x1 + (17,7) n__nil_A() = (0,1) a_A() = (2,1) e_A() = (2,2) i_A() = (2,2) o_A() = (1,1) u_A() = (2,2) precedence: n__a = a > n__isPal = isPal > isNePal > n__isNeList > n__o = o > activate = isList = n__isList = tt = isQid = isNeList > nil = n__nil > activate# = isNeList# = n____ = isList# = and# = __ > and > n__e = e > n__i = i > n__u = u partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [] pi(activate) = [1] pi(isList#) = [] pi(and#) = [] pi(isList) = [] pi(n__isList) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [1, 2] pi(and) = [2] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isNeList) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(n____(V1,V2)) -> activate#(V1) p3: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p4: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p5: isList#(n____(V1,V2)) -> activate#(V1) p6: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p7: and#(tt(),X) -> activate#(X) p8: isList#(V) -> isNeList#(activate(V)) p9: isNeList#(V) -> activate#(V) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__isNeList(X)) -> isNeList#(X) p2: isNeList#(V) -> activate#(V) p3: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p4: isList#(V) -> isNeList#(activate(V)) p5: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p6: isNeList#(n____(V1,V2)) -> activate#(V1) p7: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p8: and#(tt(),X) -> activate#(X) p9: isList#(n____(V1,V2)) -> activate#(V1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,0),(0,0)) x1 + (1,3) n__isNeList_A(x1) = ((1,0),(0,0)) x1 + (5,3) isNeList#_A(x1) = ((1,0),(0,0)) x1 + (1,3) n_____A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (13,3) isList#_A(x1) = ((1,0),(0,0)) x1 + (7,3) activate_A(x1) = x1 + (5,2) and#_A(x1,x2) = ((1,0),(0,0)) x2 + (2,3) isList_A(x1) = ((1,0),(0,0)) x1 + (16,5) n__isList_A(x1) = ((1,0),(0,0)) x1 + (12,3) tt_A() = (2,3) isNePal_A(x1) = ((0,1),(0,0)) x1 + (4,7) isQid_A(x1) = (3,3) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (14,3) and_A(x1,x2) = x2 + (5,2) n__isPal_A(x1) = ((0,1),(0,0)) x1 + (2,5) n__a_A() = (1,1) n__e_A() = (1,1) n__i_A() = (1,1) n__o_A() = (0,1) n__u_A() = (0,1) nil_A() = (4,4) isNeList_A(x1) = ((1,0),(0,0)) x1 + (10,5) isPal_A(x1) = ((0,1),(0,0)) x1 + (6,7) n__nil_A() = (3,3) a_A() = (1,1) e_A() = (6,2) i_A() = (2,2) o_A() = (5,2) u_A() = (5,2) precedence: activate# = n__isNeList = isNeList# = n____ = isList# = activate = and# = isList = isNePal = __ = and = n__isPal = nil = isNeList = isPal > tt = isQid > n__isList > n__i = n__u = i = u > n__o = n__nil = o > n__a = a > n__e = e partial status: pi(activate#) = [] pi(n__isNeList) = [] pi(isNeList#) = [] pi(n____) = [] pi(isList#) = [] pi(activate) = [] pi(and#) = [] pi(isList) = [] pi(n__isList) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [] pi(and) = [] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isNeList) = [] pi(isPal) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(V) -> activate#(V) p2: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p3: isList#(V) -> isNeList#(activate(V)) p4: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) p5: isNeList#(n____(V1,V2)) -> activate#(V1) p6: isList#(n____(V1,V2)) -> and#(isList(activate(V1)),n__isList(activate(V2))) p7: and#(tt(),X) -> activate#(X) p8: isList#(n____(V1,V2)) -> activate#(V1) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p2: isList#(V) -> isNeList#(activate(V)) p3: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNeList#_A(x1) = ((1,0),(1,1)) x1 + (5,0) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (6,0) isList#_A(x1) = ((1,0),(1,1)) x1 + (8,3) activate_A(x1) = x1 + (2,1) and_A(x1,x2) = ((1,0),(1,1)) x2 + (2,1) tt_A() = (0,0) isNePal_A(x1) = ((1,0),(1,1)) x1 + (3,1) isQid_A(x1) = (0,0) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (7,1) n__isPal_A(x1) = ((1,0),(1,1)) x1 + (6,3) n__a_A() = (1,1) n__e_A() = (1,1) n__i_A() = (1,1) n__o_A() = (1,1) n__u_A() = (1,1) nil_A() = (0,1) isList_A(x1) = ((0,0),(1,1)) x1 + (2,5) isNeList_A(x1) = ((0,0),(1,1)) x1 + (2,2) n__nil_A() = (0,1) n__isList_A(x1) = ((0,0),(1,1)) x1 + (0,4) n__isNeList_A(x1) = ((0,0),(1,1)) x1 + (0,1) isPal_A(x1) = ((1,0),(1,1)) x1 + (7,4) a_A() = (2,2) e_A() = (2,2) i_A() = (2,2) o_A() = (2,2) u_A() = (2,2) precedence: isNeList# = n____ = isList# = activate = and = __ = n__isPal = n__a = n__e = n__o = n__u = isList = isNeList = n__isNeList = isPal = u > isNePal = isQid > n__i = nil = n__nil = n__isList = a = e = i > tt = o partial status: pi(isNeList#) = [] pi(n____) = [] pi(isList#) = [] pi(activate) = [] pi(and) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isList) = [] pi(isNeList) = [] pi(n__nil) = [] pi(n__isList) = [] pi(n__isNeList) = [] pi(isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> isList#(activate(V1)) p2: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(n____(V1,V2)) -> isNeList#(activate(V1)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNeList#_A(x1) = ((1,0),(1,1)) x1 + (1,0) n_____A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (12,22) activate_A(x1) = x1 + (8,9) and_A(x1,x2) = x2 + (8,9) tt_A() = (2,0) isNePal_A(x1) = ((0,0),(1,0)) x1 + (13,0) isQid_A(x1) = (8,0) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (12,22) n__isPal_A(x1) = ((0,0),(1,0)) x1 + (5,7) n__a_A() = (1,1) n__e_A() = (1,1) n__i_A() = (1,1) n__o_A() = (1,1) n__u_A() = (1,0) nil_A() = (2,2) isList_A(x1) = ((0,0),(0,1)) x1 + (9,13) isNeList_A(x1) = ((0,0),(0,1)) x1 + (9,4) n__nil_A() = (1,1) n__isList_A(x1) = ((0,0),(0,1)) x1 + (1,4) n__isNeList_A(x1) = ((0,0),(0,1)) x1 + (1,2) isPal_A(x1) = ((0,0),(1,0)) x1 + (13,8) a_A() = (2,2) e_A() = (2,2) i_A() = (2,2) o_A() = (2,2) u_A() = (2,1) precedence: isNeList# = n____ = activate = and = tt = isNePal = isQid = __ = n__isPal = n__a = n__e = n__i = n__o = n__u = nil = isList = isNeList = n__nil = n__isList = n__isNeList = isPal = a = e = i = o = u partial status: pi(isNeList#) = [] pi(n____) = [] pi(activate) = [] pi(and) = [] pi(tt) = [] pi(isNePal) = [] pi(isQid) = [] pi(__) = [] pi(n__isPal) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(nil) = [] pi(isList) = [] pi(isNeList) = [] pi(n__nil) = [] pi(n__isList) = [] pi(n__isNeList) = [] pi(isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: __#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) ___A(x1,x2) = x1 + x2 + (2,1) nil_A() = (1,1) n_____A(x1,x2) = (1,1) precedence: __ > __# = nil = n____ partial status: pi(__#) = [1] pi(__) = [] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: and(tt(),X) -> activate(X) r5: isList(V) -> isNeList(activate(V)) r6: isList(n__nil()) -> tt() r7: isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2))) r8: isNeList(V) -> isQid(activate(V)) r9: isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2))) r10: isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2))) r11: isNePal(V) -> isQid(activate(V)) r12: isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P))) r13: isPal(V) -> isNePal(activate(V)) r14: isPal(n__nil()) -> tt() r15: isQid(n__a()) -> tt() r16: isQid(n__e()) -> tt() r17: isQid(n__i()) -> tt() r18: isQid(n__o()) -> tt() r19: isQid(n__u()) -> tt() r20: nil() -> n__nil() r21: __(X1,X2) -> n____(X1,X2) r22: isList(X) -> n__isList(X) r23: isNeList(X) -> n__isNeList(X) r24: isPal(X) -> n__isPal(X) r25: a() -> n__a() r26: e() -> n__e() r27: i() -> n__i() r28: o() -> n__o() r29: u() -> n__u() r30: activate(n__nil()) -> nil() r31: activate(n____(X1,X2)) -> __(X1,X2) r32: activate(n__isList(X)) -> isList(X) r33: activate(n__isNeList(X)) -> isNeList(X) r34: activate(n__isPal(X)) -> isPal(X) r35: activate(n__a()) -> a() r36: activate(n__e()) -> e() r37: activate(n__i()) -> i() r38: activate(n__o()) -> o() r39: activate(n__u()) -> u() r40: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: __#_A(x1,x2) = ((1,1),(0,1)) x1 + (2,2) ___A(x1,x2) = x1 + x2 + (1,1) nil_A() = (1,1) n_____A(x1,x2) = (0,0) precedence: __ > __# = nil = n____ partial status: pi(__#) = [1] pi(__) = [] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.