YES We show the termination of the TRS R: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) a____(X,nil()) -> mark(X) a____(nil(),X) -> mark(X) a__U11(tt()) -> tt() a__U21(tt(),V2) -> a__U22(a__isList(V2)) a__U22(tt()) -> tt() a__U31(tt()) -> tt() a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) a__U42(tt()) -> tt() a__U51(tt(),V2) -> a__U52(a__isList(V2)) a__U52(tt()) -> tt() a__U61(tt()) -> tt() a__U71(tt(),P) -> a__U72(a__isPal(P)) a__U72(tt()) -> tt() a__U81(tt()) -> tt() a__isList(V) -> a__U11(a__isNeList(V)) a__isList(nil()) -> tt() a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) a__isNeList(V) -> a__U31(a__isQid(V)) a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) a__isNePal(V) -> a__U61(a__isQid(V)) a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) a__isPal(V) -> a__U81(a__isNePal(V)) a__isPal(nil()) -> tt() a__isQid(a()) -> tt() a__isQid(e()) -> tt() a__isQid(i()) -> tt() a__isQid(o()) -> tt() a__isQid(u()) -> tt() mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) mark(U11(X)) -> a__U11(mark(X)) mark(U21(X1,X2)) -> a__U21(mark(X1),X2) mark(U22(X)) -> a__U22(mark(X)) mark(isList(X)) -> a__isList(X) mark(U31(X)) -> a__U31(mark(X)) mark(U41(X1,X2)) -> a__U41(mark(X1),X2) mark(U42(X)) -> a__U42(mark(X)) mark(isNeList(X)) -> a__isNeList(X) mark(U51(X1,X2)) -> a__U51(mark(X1),X2) mark(U52(X)) -> a__U52(mark(X)) mark(U61(X)) -> a__U61(mark(X)) mark(U71(X1,X2)) -> a__U71(mark(X1),X2) mark(U72(X)) -> a__U72(mark(X)) mark(isPal(X)) -> a__isPal(X) mark(U81(X)) -> a__U81(mark(X)) mark(isQid(X)) -> a__isQid(X) mark(isNePal(X)) -> a__isNePal(X) mark(nil()) -> nil() mark(tt()) -> tt() mark(a()) -> a() mark(e()) -> e() mark(i()) -> i() mark(o()) -> o() mark(u()) -> u() a____(X1,X2) -> __(X1,X2) a__U11(X) -> U11(X) a__U21(X1,X2) -> U21(X1,X2) a__U22(X) -> U22(X) a__isList(X) -> isList(X) a__U31(X) -> U31(X) a__U41(X1,X2) -> U41(X1,X2) a__U42(X) -> U42(X) a__isNeList(X) -> isNeList(X) a__U51(X1,X2) -> U51(X1,X2) a__U52(X) -> U52(X) a__U61(X) -> U61(X) a__U71(X1,X2) -> U71(X1,X2) a__U72(X) -> U72(X) a__isPal(X) -> isPal(X) a__U81(X) -> U81(X) a__isQid(X) -> isQid(X) a__isNePal(X) -> isNePal(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(X) p3: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p4: a____#(__(X,Y),Z) -> mark#(Y) p5: a____#(__(X,Y),Z) -> mark#(Z) p6: a____#(X,nil()) -> mark#(X) p7: a____#(nil(),X) -> mark#(X) p8: a__U21#(tt(),V2) -> a__U22#(a__isList(V2)) p9: a__U21#(tt(),V2) -> a__isList#(V2) p10: a__U41#(tt(),V2) -> a__U42#(a__isNeList(V2)) p11: a__U41#(tt(),V2) -> a__isNeList#(V2) p12: a__U51#(tt(),V2) -> a__U52#(a__isList(V2)) p13: a__U51#(tt(),V2) -> a__isList#(V2) p14: a__U71#(tt(),P) -> a__U72#(a__isPal(P)) p15: a__U71#(tt(),P) -> a__isPal#(P) p16: a__isList#(V) -> a__U11#(a__isNeList(V)) p17: a__isList#(V) -> a__isNeList#(V) p18: a__isList#(__(V1,V2)) -> a__U21#(a__isList(V1),V2) p19: a__isList#(__(V1,V2)) -> a__isList#(V1) p20: a__isNeList#(V) -> a__U31#(a__isQid(V)) p21: a__isNeList#(V) -> a__isQid#(V) p22: a__isNeList#(__(V1,V2)) -> a__U41#(a__isList(V1),V2) p23: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p24: a__isNeList#(__(V1,V2)) -> a__U51#(a__isNeList(V1),V2) p25: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p26: a__isNePal#(V) -> a__U61#(a__isQid(V)) p27: a__isNePal#(V) -> a__isQid#(V) p28: a__isNePal#(__(I,__(P,I))) -> a__U71#(a__isQid(I),P) p29: a__isNePal#(__(I,__(P,I))) -> a__isQid#(I) p30: a__isPal#(V) -> a__U81#(a__isNePal(V)) p31: a__isPal#(V) -> a__isNePal#(V) p32: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p33: mark#(__(X1,X2)) -> mark#(X1) p34: mark#(__(X1,X2)) -> mark#(X2) p35: mark#(U11(X)) -> a__U11#(mark(X)) p36: mark#(U11(X)) -> mark#(X) p37: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p38: mark#(U21(X1,X2)) -> mark#(X1) p39: mark#(U22(X)) -> a__U22#(mark(X)) p40: mark#(U22(X)) -> mark#(X) p41: mark#(isList(X)) -> a__isList#(X) p42: mark#(U31(X)) -> a__U31#(mark(X)) p43: mark#(U31(X)) -> mark#(X) p44: mark#(U41(X1,X2)) -> a__U41#(mark(X1),X2) p45: mark#(U41(X1,X2)) -> mark#(X1) p46: mark#(U42(X)) -> a__U42#(mark(X)) p47: mark#(U42(X)) -> mark#(X) p48: mark#(isNeList(X)) -> a__isNeList#(X) p49: mark#(U51(X1,X2)) -> a__U51#(mark(X1),X2) p50: mark#(U51(X1,X2)) -> mark#(X1) p51: mark#(U52(X)) -> a__U52#(mark(X)) p52: mark#(U52(X)) -> mark#(X) p53: mark#(U61(X)) -> a__U61#(mark(X)) p54: mark#(U61(X)) -> mark#(X) p55: mark#(U71(X1,X2)) -> a__U71#(mark(X1),X2) p56: mark#(U71(X1,X2)) -> mark#(X1) p57: mark#(U72(X)) -> a__U72#(mark(X)) p58: mark#(U72(X)) -> mark#(X) p59: mark#(isPal(X)) -> a__isPal#(X) p60: mark#(U81(X)) -> a__U81#(mark(X)) p61: mark#(U81(X)) -> mark#(X) p62: mark#(isQid(X)) -> a__isQid#(X) p63: mark#(isNePal(X)) -> a__isNePal#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p32, p33, p34, p36, p38, p40, p43, p45, p47, p50, p52, p54, p56, p58, p61} {p9, p11, p13, p17, p18, p19, p22, p23, p24, p25} {p15, p28, p31} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(nil(),X) -> mark#(X) p3: mark#(U81(X)) -> mark#(X) p4: mark#(U72(X)) -> mark#(X) p5: mark#(U71(X1,X2)) -> mark#(X1) p6: mark#(U61(X)) -> mark#(X) p7: mark#(U52(X)) -> mark#(X) p8: mark#(U51(X1,X2)) -> mark#(X1) p9: mark#(U42(X)) -> mark#(X) p10: mark#(U41(X1,X2)) -> mark#(X1) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U22(X)) -> mark#(X) p13: mark#(U21(X1,X2)) -> mark#(X1) p14: mark#(U11(X)) -> mark#(X) p15: mark#(__(X1,X2)) -> mark#(X2) p16: mark#(__(X1,X2)) -> mark#(X1) p17: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p18: a____#(X,nil()) -> mark#(X) p19: a____#(__(X,Y),Z) -> mark#(Z) p20: a____#(__(X,Y),Z) -> mark#(Y) p21: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p22: a____#(__(X,Y),Z) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a____#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (10,0) ___A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (11,28) mark_A(x1) = ((1,0),(1,0)) x1 + (0,29) a_____A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (11,29) nil_A() = (1,29) mark#_A(x1) = ((1,0),(0,0)) x1 U81_A(x1) = ((1,0),(0,0)) x1 + (1,1) U72_A(x1) = ((1,0),(0,0)) x1 + (1,29) U71_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (35,29) U61_A(x1) = x1 + (29,29) U52_A(x1) = ((1,0),(0,0)) x1 + (1,29) U51_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (11,30) U42_A(x1) = x1 + (1,1) U41_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (8,1) U31_A(x1) = x1 + (1,1) U22_A(x1) = ((1,0),(0,0)) x1 + (1,1) U21_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (7,28) U11_A(x1) = ((1,0),(0,0)) x1 + (1,22) a__U11_A(x1) = ((1,0),(0,0)) x1 + (1,23) tt_A() = (22,23) a__U21_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(1,0)) x2 + (7,28) a__U22_A(x1) = ((1,0),(1,0)) x1 + (1,1) a__isList_A(x1) = ((1,0),(1,0)) x1 + (27,23) a__U31_A(x1) = x1 + (1,1) a__U41_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (8,8) a__U42_A(x1) = x1 + (1,1) a__isNeList_A(x1) = ((1,0),(1,0)) x1 + (25,30) a__U51_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (11,30) a__U52_A(x1) = ((1,0),(0,0)) x1 + (1,30) a__U61_A(x1) = x1 + (29,29) a__U71_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (35,29) a__U72_A(x1) = ((1,0),(0,0)) x1 + (1,29) a__isPal_A(x1) = ((1,0),(0,0)) x1 + (55,24) a__U81_A(x1) = ((1,0),(0,0)) x1 + (1,23) a__isQid_A(x1) = (23,29) a__isNePal_A(x1) = ((1,0),(0,0)) x1 + (53,58) a_A() = (0,23) e_A() = (0,23) i_A() = (0,23) o_A() = (0,23) u_A() = (0,23) isList_A(x1) = ((1,0),(0,0)) x1 + (27,22) isNeList_A(x1) = ((1,0),(1,0)) x1 + (25,30) isPal_A(x1) = ((1,0),(0,0)) x1 + (55,24) isQid_A(x1) = (23,29) isNePal_A(x1) = ((1,0),(0,0)) x1 + (53,58) precedence: mark = a____ = U41 = a__U41 = a__isNeList > a__U71 = a__isNePal = isNePal > a__U51 = a__U52 > a__isPal > a__U11 = a__U21 = a__U22 = a__isList > nil > a__U72 > a__isQid > isQid > U21 > isPal > U11 > i > U42 = tt = a__U42 > U52 > U22 = isNeList > U51 > a > isList > o > u > a__U61 > U61 > __ > a____# = mark# = U81 = U72 = U71 = U31 = a__U31 = a__U81 = e partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(nil) = [] pi(mark#) = [] pi(U81) = [] pi(U72) = [] pi(U71) = [] pi(U61) = [] pi(U52) = [] pi(U51) = [] pi(U42) = [] pi(U41) = [] pi(U31) = [] pi(U22) = [] pi(U21) = [] pi(U11) = [] pi(a__U11) = [] pi(tt) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__isList) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__isNeList) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__U61) = [] pi(a__U71) = [] pi(a__U72) = [] pi(a__isPal) = [] pi(a__U81) = [] pi(a__isQid) = [] pi(a__isNePal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isList) = [] pi(isNeList) = [] pi(isPal) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: mark#(U81(X)) -> mark#(X) p3: mark#(U72(X)) -> mark#(X) p4: mark#(U71(X1,X2)) -> mark#(X1) p5: mark#(U61(X)) -> mark#(X) p6: mark#(U52(X)) -> mark#(X) p7: mark#(U51(X1,X2)) -> mark#(X1) p8: mark#(U42(X)) -> mark#(X) p9: mark#(U41(X1,X2)) -> mark#(X1) p10: mark#(U31(X)) -> mark#(X) p11: mark#(U22(X)) -> mark#(X) p12: mark#(U21(X1,X2)) -> mark#(X1) p13: mark#(U11(X)) -> mark#(X) p14: mark#(__(X1,X2)) -> mark#(X2) p15: mark#(__(X1,X2)) -> mark#(X1) p16: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p17: a____#(X,nil()) -> mark#(X) p18: a____#(__(X,Y),Z) -> mark#(Z) p19: a____#(__(X,Y),Z) -> mark#(Y) p20: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p21: a____#(__(X,Y),Z) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(X) p3: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p4: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p5: a____#(__(X,Y),Z) -> mark#(Y) p6: mark#(__(X1,X2)) -> mark#(X1) p7: mark#(__(X1,X2)) -> mark#(X2) p8: mark#(U11(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U22(X)) -> mark#(X) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U41(X1,X2)) -> mark#(X1) p13: mark#(U42(X)) -> mark#(X) p14: mark#(U51(X1,X2)) -> mark#(X1) p15: mark#(U52(X)) -> mark#(X) p16: mark#(U61(X)) -> mark#(X) p17: mark#(U71(X1,X2)) -> mark#(X1) p18: mark#(U72(X)) -> mark#(X) p19: mark#(U81(X)) -> mark#(X) p20: a____#(__(X,Y),Z) -> mark#(Z) p21: a____#(X,nil()) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a____#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (1,13) ___A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (14,12) mark_A(x1) = ((0,1),(0,1)) x1 + (20,0) a_____A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (19,12) mark#_A(x1) = ((0,1),(0,1)) x1 + (0,13) U11_A(x1) = ((0,0),(0,1)) x1 + (1,1) U21_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (0,2) U22_A(x1) = ((0,0),(0,1)) x1 U31_A(x1) = ((0,0),(0,1)) x1 + (9,9) U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (14,2) U42_A(x1) = ((0,0),(0,1)) x1 + (1,1) U51_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (19,4) U52_A(x1) = ((0,0),(0,1)) x1 + (3,1) U61_A(x1) = ((0,0),(0,1)) x1 + (0,1) U71_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (0,3) U72_A(x1) = ((0,1),(0,1)) x1 + (21,2) U81_A(x1) = ((0,0),(0,1)) x1 + (0,1) nil_A() = (1,2) a__U11_A(x1) = ((0,0),(0,1)) x1 + (21,1) tt_A() = (2,8) a__U21_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (21,2) a__U22_A(x1) = x1 a__isList_A(x1) = ((0,1),(0,1)) x1 + (29,10) a__U31_A(x1) = x1 + (9,9) a__U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,1),(0,1)) x2 + (15,2) a__U42_A(x1) = ((0,0),(0,1)) x1 + (3,1) a__isNeList_A(x1) = ((0,1),(0,1)) x1 + (16,9) a__U51_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (19,4) a__U52_A(x1) = ((0,0),(0,1)) x1 + (3,1) a__U61_A(x1) = ((0,1),(0,1)) x1 + (0,1) a__U71_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (23,3) a__U72_A(x1) = ((0,1),(0,1)) x1 + (22,2) a__isPal_A(x1) = ((0,1),(0,1)) x1 + (0,9) a__U81_A(x1) = x1 + (0,1) a__isQid_A(x1) = ((0,1),(0,1)) x1 a__isNePal_A(x1) = ((0,1),(0,1)) x1 + (0,1) a_A() = (1,8) e_A() = (1,8) i_A() = (1,8) o_A() = (1,8) u_A() = (2,8) isList_A(x1) = ((0,1),(0,1)) x1 + (28,10) isNeList_A(x1) = ((0,1),(0,1)) x1 + (1,9) isPal_A(x1) = ((0,0),(0,1)) x1 + (0,9) isQid_A(x1) = ((0,0),(0,1)) x1 isNePal_A(x1) = ((0,0),(0,1)) x1 + (0,1) precedence: __ = a____ = o > a__isPal > isPal > mark# > a____# = U42 = a__U42 > a__U61 = a__isNePal > isNePal > mark = U21 = U22 = U31 = a__U11 = tt = a__U21 = a__U22 = a__isList = a__U31 = a__U41 = a__isNeList = a__U51 = a__U52 = a__isQid = e = isQid > U81 = a__U81 = a = isNeList > U71 = a__U71 = a__U72 > U72 > U61 = isList > i > U11 > U52 > U41 = U51 = nil = u partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(mark#) = [] pi(U11) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] pi(U42) = [] pi(U51) = [] pi(U52) = [] pi(U61) = [] pi(U71) = [] pi(U72) = [] pi(U81) = [] pi(nil) = [] pi(a__U11) = [] pi(tt) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__isList) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__isNeList) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__U61) = [] pi(a__U71) = [] pi(a__U72) = [] pi(a__isPal) = [] pi(a__U81) = [1] pi(a__isQid) = [] pi(a__isNePal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isList) = [] pi(isNeList) = [] pi(isPal) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p21 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(X) p3: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p4: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p5: a____#(__(X,Y),Z) -> mark#(Y) p6: mark#(__(X1,X2)) -> mark#(X1) p7: mark#(__(X1,X2)) -> mark#(X2) p8: mark#(U11(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U22(X)) -> mark#(X) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U41(X1,X2)) -> mark#(X1) p13: mark#(U42(X)) -> mark#(X) p14: mark#(U51(X1,X2)) -> mark#(X1) p15: mark#(U52(X)) -> mark#(X) p16: mark#(U61(X)) -> mark#(X) p17: mark#(U71(X1,X2)) -> mark#(X1) p18: mark#(U72(X)) -> mark#(X) p19: mark#(U81(X)) -> mark#(X) p20: a____#(__(X,Y),Z) -> mark#(Z) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(Z) p3: mark#(U81(X)) -> mark#(X) p4: mark#(U72(X)) -> mark#(X) p5: mark#(U71(X1,X2)) -> mark#(X1) p6: mark#(U61(X)) -> mark#(X) p7: mark#(U52(X)) -> mark#(X) p8: mark#(U51(X1,X2)) -> mark#(X1) p9: mark#(U42(X)) -> mark#(X) p10: mark#(U41(X1,X2)) -> mark#(X1) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U22(X)) -> mark#(X) p13: mark#(U21(X1,X2)) -> mark#(X1) p14: mark#(U11(X)) -> mark#(X) p15: mark#(__(X1,X2)) -> mark#(X2) p16: mark#(__(X1,X2)) -> mark#(X1) p17: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p18: a____#(__(X,Y),Z) -> mark#(Y) p19: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p20: a____#(__(X,Y),Z) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a____#_A(x1,x2) = x1 + ((0,1),(0,1)) x2 + (2,0) ___A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (46,17) mark_A(x1) = ((0,1),(0,1)) x1 + (29,0) a_____A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (46,17) mark#_A(x1) = ((0,1),(0,1)) x1 + (47,0) U81_A(x1) = ((0,0),(0,1)) x1 + (30,2) U72_A(x1) = x1 + (30,31) U71_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,35) U61_A(x1) = ((0,0),(0,1)) x1 + (1,2) U52_A(x1) = ((0,0),(0,1)) x1 + (1,1) U51_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (14,17) U42_A(x1) = ((0,0),(0,1)) x1 + (27,1) U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (31,2) U31_A(x1) = ((0,0),(0,1)) x1 + (27,1) U22_A(x1) = ((0,0),(0,1)) x1 + (27,1) U21_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (28,3) U11_A(x1) = ((0,0),(0,1)) x1 + (28,1) a__U11_A(x1) = ((0,0),(0,1)) x1 + (30,1) tt_A() = (26,36) a__U21_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (28,3) a__U22_A(x1) = ((0,0),(0,1)) x1 + (27,1) a__isList_A(x1) = ((0,0),(0,1)) x1 + (48,38) a__U31_A(x1) = ((0,0),(0,1)) x1 + (27,1) a__U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (31,2) a__U42_A(x1) = ((0,0),(0,1)) x1 + (27,1) a__isNeList_A(x1) = ((0,1),(0,1)) x1 + (31,37) a__U51_A(x1,x2) = x1 + ((0,1),(0,1)) x2 + (14,17) a__U52_A(x1) = ((0,1),(0,1)) x1 + (1,1) a__U61_A(x1) = x1 + (1,2) a__U71_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (62,35) a__U72_A(x1) = x1 + (30,31) a__isPal_A(x1) = ((0,0),(0,1)) x1 + (31,40) a__U81_A(x1) = ((0,0),(0,1)) x1 + (30,2) nil_A() = (0,36) a__isQid_A(x1) = (64,36) a__isNePal_A(x1) = ((0,0),(0,1)) x1 + (66,38) a_A() = (1,36) e_A() = (1,36) i_A() = (1,36) o_A() = (1,0) u_A() = (27,0) isList_A(x1) = ((0,0),(0,1)) x1 + (48,38) isNeList_A(x1) = ((0,0),(0,1)) x1 + (31,37) isPal_A(x1) = ((0,0),(0,1)) x1 + (31,40) isQid_A(x1) = (1,36) isNePal_A(x1) = ((0,0),(0,1)) x1 + (66,38) precedence: o > mark = a____ = a__isList > __ > a__U22 > a__U11 > tt = a__U42 = a__isPal = a__isQid = isPal > a____# = mark# = U41 = a__U41 = a__isNeList > U11 > U52 = a__U51 = a__U52 > a__U21 > a > isList > isNeList > U22 > a__isNePal = isNePal > U21 > a__U71 = a__U72 > U72 > U51 > nil > i > isQid > U42 > U31 = a__U31 > U81 = U61 = a__U61 = a__U81 > e > U71 > u partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(mark#) = [] pi(U81) = [] pi(U72) = [1] pi(U71) = [] pi(U61) = [] pi(U52) = [] pi(U51) = [] pi(U42) = [] pi(U41) = [] pi(U31) = [] pi(U22) = [] pi(U21) = [] pi(U11) = [] pi(a__U11) = [] pi(tt) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__isList) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__isNeList) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__U61) = [1] pi(a__U71) = [] pi(a__U72) = [] pi(a__isPal) = [] pi(a__U81) = [] pi(nil) = [] pi(a__isQid) = [] pi(a__isNePal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isList) = [] pi(isNeList) = [] pi(isPal) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p18 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(Z) p3: mark#(U81(X)) -> mark#(X) p4: mark#(U72(X)) -> mark#(X) p5: mark#(U71(X1,X2)) -> mark#(X1) p6: mark#(U61(X)) -> mark#(X) p7: mark#(U52(X)) -> mark#(X) p8: mark#(U51(X1,X2)) -> mark#(X1) p9: mark#(U42(X)) -> mark#(X) p10: mark#(U41(X1,X2)) -> mark#(X1) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U22(X)) -> mark#(X) p13: mark#(U21(X1,X2)) -> mark#(X1) p14: mark#(U11(X)) -> mark#(X) p15: mark#(__(X1,X2)) -> mark#(X2) p16: mark#(__(X1,X2)) -> mark#(X1) p17: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p18: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p19: a____#(__(X,Y),Z) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(X) p3: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p4: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p5: a____#(__(X,Y),Z) -> mark#(Z) p6: mark#(__(X1,X2)) -> mark#(X1) p7: mark#(__(X1,X2)) -> mark#(X2) p8: mark#(U11(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U22(X)) -> mark#(X) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U41(X1,X2)) -> mark#(X1) p13: mark#(U42(X)) -> mark#(X) p14: mark#(U51(X1,X2)) -> mark#(X1) p15: mark#(U52(X)) -> mark#(X) p16: mark#(U61(X)) -> mark#(X) p17: mark#(U71(X1,X2)) -> mark#(X1) p18: mark#(U72(X)) -> mark#(X) p19: mark#(U81(X)) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a____#_A(x1,x2) = ((1,0),(1,0)) x1 + ((0,1),(0,1)) x2 + (11,0) ___A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (12,12) mark_A(x1) = ((0,1),(0,1)) x1 a_____A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (12,12) mark#_A(x1) = ((0,1),(0,1)) x1 + (23,12) U11_A(x1) = ((0,0),(0,1)) x1 + (1,1) U21_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,8) U22_A(x1) = ((0,0),(0,1)) x1 + (1,1) U31_A(x1) = ((0,0),(0,1)) x1 + (1,1) U41_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,11) U42_A(x1) = ((0,0),(0,1)) x1 + (1,5) U51_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (9,10) U52_A(x1) = ((0,1),(0,1)) x1 + (1,2) U61_A(x1) = ((0,0),(0,1)) x1 + (1,2) U71_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,21) U72_A(x1) = ((0,0),(0,1)) x1 + (1,2) U81_A(x1) = ((0,0),(0,1)) x1 + (0,12) a__U11_A(x1) = ((0,0),(0,1)) x1 + (1,1) tt_A() = (0,0) a__U21_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (2,8) a__U22_A(x1) = ((0,0),(0,1)) x1 + (1,1) a__isList_A(x1) = ((0,0),(0,1)) x1 + (3,7) a__U31_A(x1) = ((0,0),(0,1)) x1 + (1,1) a__U41_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (8,11) a__U42_A(x1) = x1 + (3,5) a__isNeList_A(x1) = ((0,1),(0,1)) x1 + (4,6) a__U51_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (9,10) a__U52_A(x1) = ((0,1),(0,1)) x1 + (1,2) a__U61_A(x1) = x1 + (1,2) a__U71_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,21) a__U72_A(x1) = ((0,0),(0,1)) x1 + (1,2) a__isPal_A(x1) = ((0,0),(0,1)) x1 + (8,19) a__U81_A(x1) = ((0,0),(0,1)) x1 + (0,12) nil_A() = (0,0) a__isQid_A(x1) = (5,5) a__isNePal_A(x1) = ((0,0),(0,1)) x1 + (7,7) a_A() = (1,2) e_A() = (0,1) i_A() = (1,2) o_A() = (1,2) u_A() = (0,0) isList_A(x1) = ((0,0),(0,1)) x1 + (3,7) isNeList_A(x1) = ((0,1),(0,1)) x1 + (3,6) isPal_A(x1) = ((0,0),(0,1)) x1 + (8,19) isQid_A(x1) = (5,5) isNePal_A(x1) = ((0,0),(0,1)) x1 + (7,7) precedence: a > U61 = a__U61 > a____# = mark# > mark = a____ = U11 = U21 = a__U11 = a__U21 = a__U22 = a__isList = a__U31 = a__U71 = a__U72 = a__isNePal = i = u > U31 > U72 > a__isNeList > a__U51 = a__U52 > e > U52 > isNeList > U42 = tt = a__U41 = a__U42 = a__isPal = a__U81 = a__isQid = o = isPal = isQid > __ > U22 > U71 > U81 = nil > isList > U51 > U41 = isNePal partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(mark#) = [] pi(U11) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] pi(U42) = [] pi(U51) = [] pi(U52) = [] pi(U61) = [] pi(U71) = [] pi(U72) = [] pi(U81) = [] pi(a__U11) = [] pi(tt) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__isList) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__isNeList) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__U61) = [] pi(a__U71) = [] pi(a__U72) = [] pi(a__isPal) = [] pi(a__U81) = [] pi(nil) = [] pi(a__isQid) = [] pi(a__isNePal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isList) = [] pi(isNeList) = [] pi(isPal) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(X) p3: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p4: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p5: a____#(__(X,Y),Z) -> mark#(Z) p6: mark#(__(X1,X2)) -> mark#(X1) p7: mark#(__(X1,X2)) -> mark#(X2) p8: mark#(U11(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U22(X)) -> mark#(X) p11: mark#(U41(X1,X2)) -> mark#(X1) p12: mark#(U42(X)) -> mark#(X) p13: mark#(U51(X1,X2)) -> mark#(X1) p14: mark#(U52(X)) -> mark#(X) p15: mark#(U61(X)) -> mark#(X) p16: mark#(U71(X1,X2)) -> mark#(X1) p17: mark#(U72(X)) -> mark#(X) p18: mark#(U81(X)) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(Z) p3: mark#(U81(X)) -> mark#(X) p4: mark#(U72(X)) -> mark#(X) p5: mark#(U71(X1,X2)) -> mark#(X1) p6: mark#(U61(X)) -> mark#(X) p7: mark#(U52(X)) -> mark#(X) p8: mark#(U51(X1,X2)) -> mark#(X1) p9: mark#(U42(X)) -> mark#(X) p10: mark#(U41(X1,X2)) -> mark#(X1) p11: mark#(U22(X)) -> mark#(X) p12: mark#(U21(X1,X2)) -> mark#(X1) p13: mark#(U11(X)) -> mark#(X) p14: mark#(__(X1,X2)) -> mark#(X2) p15: mark#(__(X1,X2)) -> mark#(X1) p16: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p17: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p18: a____#(__(X,Y),Z) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a____#_A(x1,x2) = x1 + ((0,1),(0,1)) x2 ___A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (21,10) mark_A(x1) = ((0,1),(0,1)) x1 + (11,0) a_____A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (21,10) mark#_A(x1) = ((0,1),(0,1)) x1 + (2,0) U81_A(x1) = ((0,0),(0,1)) x1 + (2,4) U72_A(x1) = ((0,0),(0,1)) x1 + (0,1) U71_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (3,22) U61_A(x1) = ((0,0),(0,1)) x1 + (12,1) U52_A(x1) = ((0,0),(0,1)) x1 + (3,5) U51_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (9,0) U42_A(x1) = ((0,0),(0,1)) x1 + (3,7) U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (4,1) U22_A(x1) = ((0,0),(0,1)) x1 + (3,6) U21_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,1) U11_A(x1) = ((0,0),(0,1)) x1 + (3,1) a__U11_A(x1) = ((0,0),(0,1)) x1 + (4,1) tt_A() = (0,31) a__U21_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (4,1) a__U22_A(x1) = ((0,0),(0,1)) x1 + (3,6) a__isList_A(x1) = ((0,0),(0,1)) x1 + (5,26) a__U31_A(x1) = ((0,0),(0,1)) x1 + (1,1) a__U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (5,1) a__U42_A(x1) = ((0,0),(0,1)) x1 + (4,7) a__isNeList_A(x1) = ((0,0),(0,1)) x1 + (22,25) a__U51_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (10,0) a__U52_A(x1) = x1 + (4,5) a__U61_A(x1) = ((0,0),(0,1)) x1 + (12,1) a__U71_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (32,22) a__U72_A(x1) = ((0,0),(0,1)) x1 + (0,1) a__isPal_A(x1) = ((0,0),(0,1)) x1 + (37,32) a__U81_A(x1) = x1 + (3,4) nil_A() = (1,31) a__isQid_A(x1) = ((0,0),(0,1)) x1 + (34,24) a__isNePal_A(x1) = ((0,0),(0,1)) x1 + (33,26) a_A() = (1,7) e_A() = (1,7) i_A() = (1,31) o_A() = (1,31) u_A() = (1,7) isList_A(x1) = ((0,0),(0,1)) x1 + (1,26) U31_A(x1) = ((0,0),(0,1)) x1 + (1,1) isNeList_A(x1) = ((0,0),(0,1)) x1 + (1,25) isPal_A(x1) = ((0,0),(0,1)) x1 + (37,32) isQid_A(x1) = ((0,0),(0,1)) x1 + (1,24) isNePal_A(x1) = ((0,0),(0,1)) x1 + (1,26) precedence: a__isList > __ = mark = a____ = U81 = U71 = a__U21 = a__isNeList = a__U71 = a__isPal = a__U81 = a__isNePal = isNePal > a__isQid = isQid > mark# = a__U31 > U22 = a__U22 > a____# > U11 = a__U11 = isNeList > a__U41 > U41 > U21 = a__U72 > nil > a > U72 > a__U61 > U61 = U52 = tt = a__U51 = a__U52 = isPal > U42 = a__U42 > U51 > e > u > U31 > i > o > isList partial status: pi(a____#) = [1] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(mark#) = [] pi(U81) = [] pi(U72) = [] pi(U71) = [] pi(U61) = [] pi(U52) = [] pi(U51) = [] pi(U42) = [] pi(U41) = [] pi(U22) = [] pi(U21) = [] pi(U11) = [] pi(a__U11) = [] pi(tt) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__isList) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__isNeList) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__U61) = [] pi(a__U71) = [] pi(a__U72) = [] pi(a__isPal) = [] pi(a__U81) = [] pi(nil) = [] pi(a__isQid) = [] pi(a__isNePal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isList) = [] pi(U31) = [] pi(isNeList) = [] pi(isPal) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p16 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(Z) p3: mark#(U81(X)) -> mark#(X) p4: mark#(U72(X)) -> mark#(X) p5: mark#(U71(X1,X2)) -> mark#(X1) p6: mark#(U61(X)) -> mark#(X) p7: mark#(U52(X)) -> mark#(X) p8: mark#(U51(X1,X2)) -> mark#(X1) p9: mark#(U42(X)) -> mark#(X) p10: mark#(U41(X1,X2)) -> mark#(X1) p11: mark#(U22(X)) -> mark#(X) p12: mark#(U21(X1,X2)) -> mark#(X1) p13: mark#(U11(X)) -> mark#(X) p14: mark#(__(X1,X2)) -> mark#(X2) p15: mark#(__(X1,X2)) -> mark#(X1) p16: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p17: a____#(__(X,Y),Z) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p16} {p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a____#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (2,2) ___A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (4,1) mark_A(x1) = ((0,0),(0,1)) x1 + (11,0) a_____A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (11,1) a__U11_A(x1) = (9,1) tt_A() = (1,0) a__U21_A(x1,x2) = (3,1) a__U22_A(x1) = (2,1) a__isList_A(x1) = (10,2) a__U31_A(x1) = (2,0) a__U41_A(x1,x2) = (5,0) a__U42_A(x1) = (2,0) a__isNeList_A(x1) = (9,0) a__U51_A(x1,x2) = (5,0) a__U52_A(x1) = (2,0) a__U61_A(x1) = (1,0) a__U71_A(x1,x2) = (5,1) a__U72_A(x1) = (2,1) a__isPal_A(x1) = (6,2) a__U81_A(x1) = (2,1) nil_A() = (2,1) a__isQid_A(x1) = (8,0) a__isNePal_A(x1) = ((0,0),(0,1)) x1 + (7,0) a_A() = (2,0) e_A() = (2,1) i_A() = (2,1) o_A() = (2,1) u_A() = (2,1) U11_A(x1) = (8,1) U21_A(x1,x2) = (1,1) U22_A(x1) = (2,1) isList_A(x1) = (1,2) U31_A(x1) = (2,0) U41_A(x1,x2) = (1,0) U42_A(x1) = (2,0) isNeList_A(x1) = (9,0) U51_A(x1,x2) = (5,0) U52_A(x1) = (1,0) U61_A(x1) = (1,0) U71_A(x1,x2) = (5,1) U72_A(x1) = (1,1) isPal_A(x1) = (1,2) U81_A(x1) = (1,1) isQid_A(x1) = (1,0) isNePal_A(x1) = ((0,0),(0,1)) x1 + (1,0) precedence: a__U72 > a__U61 > mark = a____ = a__isNeList = a__U51 = a__U71 = a__isPal = a__isQid > isNePal > isQid > __ > nil > o > a__U11 = a__U81 = U81 > isPal > a > a__U21 > a__U31 > a__U22 = U22 > U61 > a__isNePal > a__isList > U21 = isList > a__U52 = U52 > tt > U31 > u > U72 > i > a__U41 = U41 > a__U42 = U42 > isNeList > U71 > U11 > U51 > a____# = e partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(a__U11) = [] pi(tt) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__isList) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__isNeList) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__U61) = [] pi(a__U71) = [] pi(a__U72) = [] pi(a__isPal) = [] pi(a__U81) = [] pi(nil) = [] pi(a__isQid) = [] pi(a__isNePal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(U11) = [] pi(U21) = [] pi(U22) = [] pi(isList) = [] pi(U31) = [] pi(U41) = [] pi(U42) = [] pi(isNeList) = [] pi(U51) = [] pi(U52) = [] pi(U61) = [] pi(U71) = [] pi(U72) = [] pi(isPal) = [] pi(U81) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a____#_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(0,0)) x2 + (1,2) ___A(x1,x2) = x1 + x2 + (4,1) mark_A(x1) = x1 a_____A(x1,x2) = x1 + x2 + (4,1) a__U11_A(x1) = (4,0) tt_A() = (0,0) a__U21_A(x1,x2) = (0,2) a__U22_A(x1) = (0,1) a__isList_A(x1) = ((0,0),(1,0)) x1 + (4,8) a__U31_A(x1) = (1,1) a__U41_A(x1,x2) = (2,2) a__U42_A(x1) = (1,1) a__isNeList_A(x1) = ((0,0),(1,0)) x1 + (3,3) a__U51_A(x1,x2) = ((0,0),(1,0)) x2 a__U52_A(x1) = (0,0) a__U61_A(x1) = (0,0) a__U71_A(x1,x2) = (9,3) a__U72_A(x1) = (1,1) a__isPal_A(x1) = (10,4) a__U81_A(x1) = (1,1) nil_A() = (0,0) a__isQid_A(x1) = (12,6) a__isNePal_A(x1) = (11,5) a_A() = (0,0) e_A() = (1,0) i_A() = (0,0) o_A() = (0,1) u_A() = (0,1) U11_A(x1) = (4,0) U21_A(x1,x2) = (0,2) U22_A(x1) = (0,1) isList_A(x1) = ((0,0),(1,0)) x1 + (4,8) U31_A(x1) = (1,1) U41_A(x1,x2) = (2,2) U42_A(x1) = (1,1) isNeList_A(x1) = ((0,0),(1,0)) x1 + (3,3) U51_A(x1,x2) = ((0,0),(1,0)) x2 U52_A(x1) = (0,0) U61_A(x1) = (0,0) U71_A(x1,x2) = (9,3) U72_A(x1) = (1,1) isPal_A(x1) = (10,4) U81_A(x1) = (1,1) isQid_A(x1) = (12,6) isNePal_A(x1) = (11,5) precedence: a____# > mark = a____ = a__U21 = a__isList = a__isNeList = a__U51 = a__isNePal = isNePal > __ > a__isQid > a > isQid > a__U81 = U81 > a__U61 = U51 = U61 > a__isPal = isPal > isNeList > a__U11 = nil = U11 > o > a__U52 = U52 > e > i > u > a__U41 = a__U42 = U41 = U42 > a__U22 = U22 > tt = a__U71 = a__U72 = U21 = U71 = U72 > isList > a__U31 = U31 partial status: pi(a____#) = [1] pi(__) = [2] pi(mark) = [] pi(a____) = [] pi(a__U11) = [] pi(tt) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__isList) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__isNeList) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__U61) = [] pi(a__U71) = [] pi(a__U72) = [] pi(a__isPal) = [] pi(a__U81) = [] pi(nil) = [] pi(a__isQid) = [] pi(a__isNePal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(U11) = [] pi(U21) = [] pi(U22) = [] pi(isList) = [] pi(U31) = [] pi(U41) = [] pi(U42) = [] pi(isNeList) = [] pi(U51) = [] pi(U52) = [] pi(U61) = [] pi(U71) = [] pi(U72) = [] pi(isPal) = [] pi(U81) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U81(X)) -> mark#(X) p2: mark#(__(X1,X2)) -> mark#(X1) p3: mark#(__(X1,X2)) -> mark#(X2) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> mark#(X1) p6: mark#(U22(X)) -> mark#(X) p7: mark#(U41(X1,X2)) -> mark#(X1) p8: mark#(U42(X)) -> mark#(X) p9: mark#(U51(X1,X2)) -> mark#(X1) p10: mark#(U52(X)) -> mark#(X) p11: mark#(U61(X)) -> mark#(X) p12: mark#(U71(X1,X2)) -> mark#(X1) p13: mark#(U72(X)) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 U81_A(x1) = ((1,1),(1,1)) x1 + (1,1) ___A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(1,0)) x2 + (1,1) U11_A(x1) = x1 + (1,1) U21_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,1) U22_A(x1) = x1 + (1,1) U41_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,1) U42_A(x1) = x1 + (1,1) U51_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,1) U52_A(x1) = x1 + (1,1) U61_A(x1) = ((1,0),(0,0)) x1 + (1,1) U71_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) U72_A(x1) = ((1,0),(0,0)) x1 + (1,1) precedence: U11 > U21 > U81 = U22 = U51 > mark# = __ = U41 = U52 = U61 > U72 > U42 = U71 partial status: pi(mark#) = [] pi(U81) = [1] pi(__) = [] pi(U11) = [1] pi(U21) = [] pi(U22) = [1] pi(U41) = [] pi(U42) = [] pi(U51) = [2] pi(U52) = [1] pi(U61) = [] pi(U71) = [] pi(U72) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U81(X)) -> mark#(X) p2: mark#(__(X1,X2)) -> mark#(X1) p3: mark#(__(X1,X2)) -> mark#(X2) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> mark#(X1) p6: mark#(U41(X1,X2)) -> mark#(X1) p7: mark#(U42(X)) -> mark#(X) p8: mark#(U51(X1,X2)) -> mark#(X1) p9: mark#(U52(X)) -> mark#(X) p10: mark#(U61(X)) -> mark#(X) p11: mark#(U71(X1,X2)) -> mark#(X1) p12: mark#(U72(X)) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U81(X)) -> mark#(X) p2: mark#(U72(X)) -> mark#(X) p3: mark#(U71(X1,X2)) -> mark#(X1) p4: mark#(U61(X)) -> mark#(X) p5: mark#(U52(X)) -> mark#(X) p6: mark#(U51(X1,X2)) -> mark#(X1) p7: mark#(U42(X)) -> mark#(X) p8: mark#(U41(X1,X2)) -> mark#(X1) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U11(X)) -> mark#(X) p11: mark#(__(X1,X2)) -> mark#(X2) p12: mark#(__(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,1)) x1 + (0,2) U81_A(x1) = ((1,1),(1,1)) x1 + (1,2) U72_A(x1) = ((1,1),(1,1)) x1 + (0,2) U71_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) U61_A(x1) = x1 + (1,1) U52_A(x1) = ((0,0),(0,1)) x1 + (1,1) U51_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U42_A(x1) = x1 + (1,1) U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U21_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U11_A(x1) = ((0,0),(0,1)) x1 + (1,1) ___A(x1,x2) = ((0,0),(1,1)) x1 + ((0,0),(0,1)) x2 + (1,1) precedence: U72 > U71 > U61 > U52 > U51 > U11 > mark# = U81 = __ > U42 = U41 = U21 partial status: pi(mark#) = [] pi(U81) = [1] pi(U72) = [1] pi(U71) = [2] pi(U61) = [1] pi(U52) = [] pi(U51) = [] pi(U42) = [1] pi(U41) = [2] pi(U21) = [2] pi(U11) = [] pi(__) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U81(X)) -> mark#(X) p2: mark#(U72(X)) -> mark#(X) p3: mark#(U71(X1,X2)) -> mark#(X1) p4: mark#(U61(X)) -> mark#(X) p5: mark#(U52(X)) -> mark#(X) p6: mark#(U51(X1,X2)) -> mark#(X1) p7: mark#(U41(X1,X2)) -> mark#(X1) p8: mark#(U21(X1,X2)) -> mark#(X1) p9: mark#(U11(X)) -> mark#(X) p10: mark#(__(X1,X2)) -> mark#(X2) p11: mark#(__(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U81(X)) -> mark#(X) p2: mark#(__(X1,X2)) -> mark#(X1) p3: mark#(__(X1,X2)) -> mark#(X2) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> mark#(X1) p6: mark#(U41(X1,X2)) -> mark#(X1) p7: mark#(U51(X1,X2)) -> mark#(X1) p8: mark#(U52(X)) -> mark#(X) p9: mark#(U61(X)) -> mark#(X) p10: mark#(U71(X1,X2)) -> mark#(X1) p11: mark#(U72(X)) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 + (2,2) U81_A(x1) = ((1,0),(1,1)) x1 + (1,1) ___A(x1,x2) = x1 + ((1,1),(0,0)) x2 + (1,1) U11_A(x1) = ((1,1),(0,0)) x1 + (1,1) U21_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,1) U41_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,1) U51_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,1) U52_A(x1) = ((1,1),(0,0)) x1 + (1,1) U61_A(x1) = ((1,1),(0,0)) x1 + (1,1) U71_A(x1,x2) = ((1,1),(1,0)) x1 + ((1,1),(1,1)) x2 + (3,1) U72_A(x1) = ((0,0),(1,1)) x1 + (1,1) precedence: U61 > mark# = U41 = U51 > U81 = __ > U11 > U21 = U52 = U71 > U72 partial status: pi(mark#) = [] pi(U81) = [1] pi(__) = [] pi(U11) = [] pi(U21) = [2] pi(U41) = [2] pi(U51) = [] pi(U52) = [] pi(U61) = [] pi(U71) = [] pi(U72) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U81(X)) -> mark#(X) p2: mark#(__(X1,X2)) -> mark#(X1) p3: mark#(__(X1,X2)) -> mark#(X2) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> mark#(X1) p6: mark#(U41(X1,X2)) -> mark#(X1) p7: mark#(U51(X1,X2)) -> mark#(X1) p8: mark#(U61(X)) -> mark#(X) p9: mark#(U71(X1,X2)) -> mark#(X1) p10: mark#(U72(X)) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U81(X)) -> mark#(X) p2: mark#(U72(X)) -> mark#(X) p3: mark#(U71(X1,X2)) -> mark#(X1) p4: mark#(U61(X)) -> mark#(X) p5: mark#(U51(X1,X2)) -> mark#(X1) p6: mark#(U41(X1,X2)) -> mark#(X1) p7: mark#(U21(X1,X2)) -> mark#(X1) p8: mark#(U11(X)) -> mark#(X) p9: mark#(__(X1,X2)) -> mark#(X2) p10: mark#(__(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(0,1)) x1 + (2,2) U81_A(x1) = x1 + (1,1) U72_A(x1) = ((1,1),(1,1)) x1 + (3,2) U71_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) U61_A(x1) = x1 + (1,1) U51_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) U41_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) U21_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) U11_A(x1) = x1 + (1,1) ___A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,1)) x2 + (3,2) precedence: U81 > __ > U72 > mark# = U71 = U51 = U21 = U11 > U61 = U41 partial status: pi(mark#) = [1] pi(U81) = [1] pi(U72) = [1] pi(U71) = [1, 2] pi(U61) = [1] pi(U51) = [] pi(U41) = [1, 2] pi(U21) = [1, 2] pi(U11) = [] pi(__) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U72(X)) -> mark#(X) p2: mark#(U71(X1,X2)) -> mark#(X1) p3: mark#(U61(X)) -> mark#(X) p4: mark#(U51(X1,X2)) -> mark#(X1) p5: mark#(U41(X1,X2)) -> mark#(X1) p6: mark#(U21(X1,X2)) -> mark#(X1) p7: mark#(U11(X)) -> mark#(X) p8: mark#(__(X1,X2)) -> mark#(X2) p9: mark#(__(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U72(X)) -> mark#(X) p2: mark#(__(X1,X2)) -> mark#(X1) p3: mark#(__(X1,X2)) -> mark#(X2) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> mark#(X1) p6: mark#(U41(X1,X2)) -> mark#(X1) p7: mark#(U51(X1,X2)) -> mark#(X1) p8: mark#(U61(X)) -> mark#(X) p9: mark#(U71(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,1)) x1 + (2,2) U72_A(x1) = ((1,1),(1,1)) x1 + (0,2) ___A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (3,2) U11_A(x1) = ((0,0),(0,1)) x1 + (1,1) U21_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U51_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U61_A(x1) = x1 + (1,1) U71_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) precedence: mark# = __ = U51 = U71 > U72 = U11 > U21 = U41 = U61 partial status: pi(mark#) = [] pi(U72) = [1] pi(__) = [2] pi(U11) = [] pi(U21) = [2] pi(U41) = [2] pi(U51) = [2] pi(U61) = [1] pi(U71) = [2] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U72(X)) -> mark#(X) p2: mark#(__(X1,X2)) -> mark#(X1) p3: mark#(__(X1,X2)) -> mark#(X2) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> mark#(X1) p6: mark#(U41(X1,X2)) -> mark#(X1) p7: mark#(U51(X1,X2)) -> mark#(X1) p8: mark#(U71(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U72(X)) -> mark#(X) p2: mark#(U71(X1,X2)) -> mark#(X1) p3: mark#(U51(X1,X2)) -> mark#(X1) p4: mark#(U41(X1,X2)) -> mark#(X1) p5: mark#(U21(X1,X2)) -> mark#(X1) p6: mark#(U11(X)) -> mark#(X) p7: mark#(__(X1,X2)) -> mark#(X2) p8: mark#(__(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,1)) x1 + (2,2) U72_A(x1) = ((1,1),(1,1)) x1 + (3,2) U71_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) U51_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U21_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U11_A(x1) = x1 + (1,1) ___A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (1,1) precedence: U71 > U72 = U51 > mark# = U41 = U11 = __ > U21 partial status: pi(mark#) = [] pi(U72) = [1] pi(U71) = [2] pi(U51) = [2] pi(U41) = [2] pi(U21) = [2] pi(U11) = [1] pi(__) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U72(X)) -> mark#(X) p2: mark#(U71(X1,X2)) -> mark#(X1) p3: mark#(U41(X1,X2)) -> mark#(X1) p4: mark#(U21(X1,X2)) -> mark#(X1) p5: mark#(U11(X)) -> mark#(X) p6: mark#(__(X1,X2)) -> mark#(X2) p7: mark#(__(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U72(X)) -> mark#(X) p2: mark#(__(X1,X2)) -> mark#(X1) p3: mark#(__(X1,X2)) -> mark#(X2) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> mark#(X1) p6: mark#(U41(X1,X2)) -> mark#(X1) p7: mark#(U71(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,1)) x1 + (2,2) U72_A(x1) = ((1,1),(0,1)) x1 + (3,2) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,1) U11_A(x1) = ((0,1),(0,1)) x1 + (0,1) U21_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (0,1) U71_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (0,1) precedence: mark# > __ > U41 = U71 > U72 = U11 = U21 partial status: pi(mark#) = [] pi(U72) = [] pi(__) = [2] pi(U11) = [] pi(U21) = [2] pi(U41) = [2] pi(U71) = [2] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U72(X)) -> mark#(X) p2: mark#(__(X1,X2)) -> mark#(X1) p3: mark#(__(X1,X2)) -> mark#(X2) p4: mark#(U21(X1,X2)) -> mark#(X1) p5: mark#(U41(X1,X2)) -> mark#(X1) p6: mark#(U71(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U72(X)) -> mark#(X) p2: mark#(U71(X1,X2)) -> mark#(X1) p3: mark#(U41(X1,X2)) -> mark#(X1) p4: mark#(U21(X1,X2)) -> mark#(X1) p5: mark#(__(X1,X2)) -> mark#(X2) p6: mark#(__(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(1,1)) x1 + (2,2) U72_A(x1) = ((1,1),(1,1)) x1 + (3,2) U71_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(1,1)) x2 + (1,1) U41_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (0,1) U21_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(1,1)) x2 + (1,1) ___A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (3,2) precedence: U72 > mark# = __ > U41 = U21 > U71 partial status: pi(mark#) = [1] pi(U72) = [1] pi(U71) = [] pi(U41) = [1, 2] pi(U21) = [] pi(__) = [1, 2] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U72(X)) -> mark#(X) p2: mark#(U71(X1,X2)) -> mark#(X1) p3: mark#(U41(X1,X2)) -> mark#(X1) p4: mark#(__(X1,X2)) -> mark#(X2) p5: mark#(__(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U72(X)) -> mark#(X) p2: mark#(__(X1,X2)) -> mark#(X1) p3: mark#(__(X1,X2)) -> mark#(X2) p4: mark#(U41(X1,X2)) -> mark#(X1) p5: mark#(U71(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (2,2) U72_A(x1) = ((1,0),(0,0)) x1 + (1,1) ___A(x1,x2) = ((1,1),(0,0)) x1 + x2 + (1,1) U41_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,1) U71_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,1),(1,1)) x2 + (3,2) precedence: U41 > mark# > U72 > __ = U71 partial status: pi(mark#) = [] pi(U72) = [] pi(__) = [2] pi(U41) = [] pi(U71) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(__(X1,X2)) -> mark#(X1) p2: mark#(__(X1,X2)) -> mark#(X2) p3: mark#(U41(X1,X2)) -> mark#(X1) p4: mark#(U71(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(__(X1,X2)) -> mark#(X1) p2: mark#(U71(X1,X2)) -> mark#(X1) p3: mark#(U41(X1,X2)) -> mark#(X1) p4: mark#(__(X1,X2)) -> mark#(X2) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,1)) x1 + (2,2) ___A(x1,x2) = x1 + ((0,0),(0,1)) x2 + (1,1) U71_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) precedence: mark# > __ > U71 = U41 partial status: pi(mark#) = [] pi(__) = [1] pi(U71) = [2] pi(U41) = [2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(__(X1,X2)) -> mark#(X1) p2: mark#(U41(X1,X2)) -> mark#(X1) p3: mark#(__(X1,X2)) -> mark#(X2) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(__(X1,X2)) -> mark#(X1) p2: mark#(__(X1,X2)) -> mark#(X2) p3: mark#(U41(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (2,2) ___A(x1,x2) = x1 + ((0,0),(0,1)) x2 + (1,1) U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) precedence: __ = U41 > mark# partial status: pi(mark#) = [] pi(__) = [] pi(U41) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(__(X1,X2)) -> mark#(X1) p2: mark#(U41(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(__(X1,X2)) -> mark#(X1) p2: mark#(U41(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (2,2) ___A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) precedence: mark# = __ > U41 partial status: pi(mark#) = [] pi(__) = [2] pi(U41) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U41(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U41(X1,X2)) -> mark#(X1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = x1 + (1,1) U41_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (2,1) precedence: U41 > mark# partial status: pi(mark#) = [1] pi(U41) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U21#(tt(),V2) -> a__isList#(V2) p2: a__isList#(__(V1,V2)) -> a__isList#(V1) p3: a__isList#(__(V1,V2)) -> a__U21#(a__isList(V1),V2) p4: a__isList#(V) -> a__isNeList#(V) p5: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p6: a__isNeList#(__(V1,V2)) -> a__U51#(a__isNeList(V1),V2) p7: a__U51#(tt(),V2) -> a__isList#(V2) p8: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p9: a__isNeList#(__(V1,V2)) -> a__U41#(a__isList(V1),V2) p10: a__U41#(tt(),V2) -> a__isNeList#(V2) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r72 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U21#_A(x1,x2) = ((1,1),(1,0)) x2 + (17,18) tt_A() = (2,1) a__isList#_A(x1) = ((1,1),(1,0)) x1 + (15,2) ___A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (16,3) a__isList_A(x1) = ((1,1),(0,1)) x1 + (11,3) a__isNeList#_A(x1) = ((1,1),(1,0)) x1 + (14,2) a__U51#_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,0)) x2 + (17,3) a__isNeList_A(x1) = ((1,1),(0,1)) x1 + (9,1) a__U41#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(1,0)) x2 + (13,4) a__U22_A(x1) = ((0,1),(0,0)) x1 + (2,3) a__U42_A(x1) = ((0,1),(0,0)) x1 + (2,2) a__U52_A(x1) = (3,2) U22_A(x1) = (1,1) U42_A(x1) = (0,0) U52_A(x1) = (0,0) a__U11_A(x1) = x1 + (1,0) a__U21_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,0)) x2 + (4,3) a__U31_A(x1) = ((0,1),(0,0)) x1 + (2,1) a__U41_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(1,0)) x2 + (7,1) a__U51_A(x1,x2) = ((1,1),(0,0)) x1 + x2 + (7,2) a__isQid_A(x1) = ((0,0),(1,1)) x1 + (3,2) a_A() = (1,1) e_A() = (3,1) i_A() = (3,1) o_A() = (3,1) u_A() = (3,1) U11_A(x1) = (0,0) U21_A(x1,x2) = (0,0) U31_A(x1) = (0,0) U41_A(x1,x2) = (6,1) U51_A(x1,x2) = (6,1) isQid_A(x1) = (1,1) nil_A() = (1,0) isList_A(x1) = (1,1) isNeList_A(x1) = (1,1) precedence: o > e > tt = a__isNeList = a__U21 > a__U51# > U51 > a__U21# = a__isList# > a__isNeList# = a__U41# > a__U22 = i > a__isList > U11 > __ = u > a > a__isQid = U21 > U31 > a__U42 = a__U41 > isQid > U41 > a__U11 > U42 = nil = isList > U22 = isNeList > U52 > a__U52 = a__U31 = a__U51 partial status: pi(a__U21#) = [] pi(tt) = [] pi(a__isList#) = [] pi(__) = [2] pi(a__isList) = [1] pi(a__isNeList#) = [] pi(a__U51#) = [] pi(a__isNeList) = [] pi(a__U41#) = [] pi(a__U22) = [] pi(a__U42) = [] pi(a__U52) = [] pi(U22) = [] pi(U42) = [] pi(U52) = [] pi(a__U11) = [1] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U51) = [] pi(a__isQid) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U51) = [] pi(isQid) = [] pi(nil) = [] pi(isList) = [] pi(isNeList) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U21#(tt(),V2) -> a__isList#(V2) p2: a__isList#(__(V1,V2)) -> a__U21#(a__isList(V1),V2) p3: a__isList#(V) -> a__isNeList#(V) p4: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p5: a__isNeList#(__(V1,V2)) -> a__U51#(a__isNeList(V1),V2) p6: a__U51#(tt(),V2) -> a__isList#(V2) p7: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p8: a__isNeList#(__(V1,V2)) -> a__U41#(a__isList(V1),V2) p9: a__U41#(tt(),V2) -> a__isNeList#(V2) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U21#(tt(),V2) -> a__isList#(V2) p2: a__isList#(V) -> a__isNeList#(V) p3: a__isNeList#(__(V1,V2)) -> a__U41#(a__isList(V1),V2) p4: a__U41#(tt(),V2) -> a__isNeList#(V2) p5: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p6: a__isList#(__(V1,V2)) -> a__U21#(a__isList(V1),V2) p7: a__isNeList#(__(V1,V2)) -> a__U51#(a__isNeList(V1),V2) p8: a__U51#(tt(),V2) -> a__isList#(V2) p9: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r72 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U21#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (2,14) tt_A() = (9,9) a__isList#_A(x1) = ((1,0),(0,0)) x1 + (10,14) a__isNeList#_A(x1) = ((1,0),(0,0)) x1 + (3,14) ___A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (12,13) a__U41#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (1,14) a__isList_A(x1) = ((0,1),(1,1)) x1 + (11,13) a__U51#_A(x1,x2) = ((1,0),(0,0)) x2 + (13,14) a__isNeList_A(x1) = ((1,1),(1,1)) x1 + (13,15) a__U22_A(x1) = ((0,1),(1,0)) x1 + (2,1) a__U42_A(x1) = ((0,1),(0,1)) x1 + (2,1) a__U52_A(x1) = x1 + (1,0) U22_A(x1) = (1,1) U42_A(x1) = (1,1) U52_A(x1) = x1 a__U11_A(x1) = ((0,0),(1,0)) x1 + (10,0) a__U21_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (7,14) a__U31_A(x1) = ((1,1),(0,1)) x1 + (1,0) a__U41_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (0,16) a__U51_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,1),(1,1)) x2 + (2,14) a__isQid_A(x1) = ((0,0),(1,1)) x1 + (10,1) a_A() = (10,9) e_A() = (1,7) i_A() = (10,9) o_A() = (10,9) u_A() = (1,7) U11_A(x1) = (0,0) U21_A(x1,x2) = (0,0) U31_A(x1) = (0,0) U41_A(x1,x2) = (0,0) U51_A(x1,x2) = (1,1) isQid_A(x1) = (1,1) nil_A() = (10,1) isList_A(x1) = (1,1) isNeList_A(x1) = (1,1) precedence: a__U41# > o > U22 = i > a__U52 = U42 = U52 > a__U21# = a__isList# = a__isNeList# = a__U51# > a > a__isNeList > tt = __ = a__U51 = a__isQid = u = U21 > a__isList > a__U21 > e > a__U11 = U11 = U51 = isQid = nil = isList > a__U22 = a__U42 = a__U31 = a__U41 = U31 = U41 = isNeList partial status: pi(a__U21#) = [] pi(tt) = [] pi(a__isList#) = [] pi(a__isNeList#) = [] pi(__) = [2] pi(a__U41#) = [] pi(a__isList) = [] pi(a__U51#) = [] pi(a__isNeList) = [] pi(a__U22) = [] pi(a__U42) = [] pi(a__U52) = [1] pi(U22) = [] pi(U42) = [] pi(U52) = [1] pi(a__U11) = [] pi(a__U21) = [2] pi(a__U31) = [1] pi(a__U41) = [2] pi(a__U51) = [] pi(a__isQid) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U51) = [] pi(isQid) = [] pi(nil) = [] pi(isList) = [] pi(isNeList) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U21#(tt(),V2) -> a__isList#(V2) p2: a__isList#(V) -> a__isNeList#(V) p3: a__U41#(tt(),V2) -> a__isNeList#(V2) p4: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p5: a__isList#(__(V1,V2)) -> a__U21#(a__isList(V1),V2) p6: a__isNeList#(__(V1,V2)) -> a__U51#(a__isNeList(V1),V2) p7: a__U51#(tt(),V2) -> a__isList#(V2) p8: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U21#(tt(),V2) -> a__isList#(V2) p2: a__isList#(__(V1,V2)) -> a__U21#(a__isList(V1),V2) p3: a__isList#(V) -> a__isNeList#(V) p4: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p5: a__isNeList#(__(V1,V2)) -> a__U51#(a__isNeList(V1),V2) p6: a__U51#(tt(),V2) -> a__isList#(V2) p7: a__isNeList#(__(V1,V2)) -> a__isList#(V1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r72 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U21#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (3,0) tt_A() = (0,3) a__isList#_A(x1) = ((0,1),(0,0)) x1 + (5,0) ___A(x1,x2) = ((0,0),(1,1)) x1 + ((0,1),(1,1)) x2 + (3,0) a__isList_A(x1) = ((1,0),(1,1)) x1 + (10,1) a__isNeList#_A(x1) = ((0,1),(0,0)) x1 + (5,0) a__U51#_A(x1,x2) = ((0,1),(0,0)) x2 + (5,0) a__isNeList_A(x1) = ((1,0),(1,1)) x1 + (6,1) a__U22_A(x1) = ((0,0),(0,1)) x1 + (1,1) a__U42_A(x1) = (1,4) a__U52_A(x1) = ((0,0),(0,1)) x1 + (1,3) U22_A(x1) = (1,1) U42_A(x1) = (0,0) U52_A(x1) = (0,0) a__U11_A(x1) = x1 + (1,0) a__U21_A(x1,x2) = ((0,0),(1,1)) x2 + (4,2) a__U31_A(x1) = ((0,1),(0,1)) x1 + (1,0) a__U41_A(x1,x2) = (4,4) a__U51_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(1,1)) x2 + (4,1) a__isQid_A(x1) = ((0,0),(1,0)) x1 + (7,1) a_A() = (2,0) e_A() = (2,0) i_A() = (2,0) o_A() = (2,0) u_A() = (2,3) U11_A(x1) = (0,0) U21_A(x1,x2) = (0,0) U31_A(x1) = (0,0) U41_A(x1,x2) = (1,1) U51_A(x1,x2) = (3,1) isQid_A(x1) = (1,1) nil_A() = (1,3) isList_A(x1) = (1,1) isNeList_A(x1) = (1,1) precedence: a__isList > o > U31 > U42 = i > a__isQid > tt = a__isNeList = a__U52 = a__U31 = a__U51 = a > a__U21 > a__U22 > U22 > isList > e > U52 = a__U41 > a__U42 > __ > U41 > u > U51 > a__U21# = a__isList# = a__isNeList# = a__U51# = a__U11 = isQid = nil > isNeList > U11 = U21 partial status: pi(a__U21#) = [] pi(tt) = [] pi(a__isList#) = [] pi(__) = [] pi(a__isList) = [1] pi(a__isNeList#) = [] pi(a__U51#) = [] pi(a__isNeList) = [] pi(a__U22) = [] pi(a__U42) = [] pi(a__U52) = [] pi(U22) = [] pi(U42) = [] pi(U52) = [] pi(a__U11) = [1] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U51) = [] pi(a__isQid) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U51) = [] pi(isQid) = [] pi(nil) = [] pi(isList) = [] pi(isNeList) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isList#(__(V1,V2)) -> a__U21#(a__isList(V1),V2) p2: a__isList#(V) -> a__isNeList#(V) p3: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p4: a__isNeList#(__(V1,V2)) -> a__U51#(a__isNeList(V1),V2) p5: a__U51#(tt(),V2) -> a__isList#(V2) p6: a__isNeList#(__(V1,V2)) -> a__isList#(V1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isList#(V) -> a__isNeList#(V) p2: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p3: a__isNeList#(__(V1,V2)) -> a__U51#(a__isNeList(V1),V2) p4: a__U51#(tt(),V2) -> a__isList#(V2) p5: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r4, r5, r6, r7, r8, r9, r10, r11, r16, r17, r18, r19, r20, r21, r26, r27, r28, r29, r30, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r72 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__isList#_A(x1) = ((1,1),(0,1)) x1 + (1,12) a__isNeList#_A(x1) = ((1,1),(0,1)) x1 + (1,12) ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (0,11) a__U51#_A(x1,x2) = ((1,1),(0,1)) x2 + (2,12) a__isNeList_A(x1) = ((0,0),(0,1)) x1 + (9,12) tt_A() = (0,4) a__U22_A(x1) = (2,5) U22_A(x1) = (1,1) a__U11_A(x1) = ((0,0),(1,0)) x1 + (2,4) a__U21_A(x1,x2) = ((0,1),(1,0)) x1 + (2,13) a__isList_A(x1) = ((0,1),(0,1)) x1 + (5,13) a__U42_A(x1) = ((0,0),(0,1)) x1 + (1,0) a__U52_A(x1) = (0,4) U11_A(x1) = (1,1) U21_A(x1,x2) = ((0,0),(1,0)) x1 + (1,1) U42_A(x1) = (0,0) U52_A(x1) = (0,0) a__U31_A(x1) = ((1,1),(0,1)) x1 + (2,1) a__U41_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + (2,8) a__U51_A(x1,x2) = (2,12) nil_A() = (1,4) a__isQid_A(x1) = (2,4) a_A() = (0,0) e_A() = (0,0) i_A() = (0,0) o_A() = (0,0) u_A() = (0,0) isList_A(x1) = (1,1) U31_A(x1) = (1,1) U41_A(x1,x2) = (1,1) U51_A(x1,x2) = (1,1) isQid_A(x1) = (1,1) isNeList_A(x1) = (1,1) precedence: a > a__U51# > a__U41 > __ = a__isNeList = a__isList = a__isQid > U11 > a__U22 = U31 > a__U52 = a__U51 > tt = a__U31 = nil > a__isList# = a__isNeList# = U22 = e = isList > i = U41 > U51 > o > a__U21 = isQid > U21 > u > a__U11 = a__U42 = U42 = U52 = isNeList partial status: pi(a__isList#) = [] pi(a__isNeList#) = [] pi(__) = [] pi(a__U51#) = [] pi(a__isNeList) = [] pi(tt) = [] pi(a__U22) = [] pi(U22) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__isList) = [] pi(a__U42) = [] pi(a__U52) = [] pi(U11) = [] pi(U21) = [] pi(U42) = [] pi(U52) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U51) = [] pi(nil) = [] pi(a__isQid) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isList) = [] pi(U31) = [] pi(U41) = [] pi(U51) = [] pi(isQid) = [] pi(isNeList) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isList#(V) -> a__isNeList#(V) p2: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p3: a__U51#(tt(),V2) -> a__isList#(V2) p4: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isList#(V) -> a__isNeList#(V) p2: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p3: a__isNeList#(__(V1,V2)) -> a__isList#(V1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__isList#_A(x1) = ((0,1),(0,1)) x1 + (2,3) a__isNeList#_A(x1) = ((0,1),(0,1)) x1 + (1,3) ___A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,0)) x2 + (3,2) precedence: a__isList# = a__isNeList# = __ partial status: pi(a__isList#) = [] pi(a__isNeList#) = [] pi(__) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isList#(V) -> a__isNeList#(V) p2: a__isNeList#(__(V1,V2)) -> a__isList#(V1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isList#(V) -> a__isNeList#(V) p2: a__isNeList#(__(V1,V2)) -> a__isList#(V1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__isList#_A(x1) = ((0,1),(0,0)) x1 + (2,4) a__isNeList#_A(x1) = ((0,1),(0,0)) x1 + (0,4) ___A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,3) precedence: a__isList# > a__isNeList# = __ partial status: pi(a__isList#) = [] pi(a__isNeList#) = [] pi(__) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isNeList#(__(V1,V2)) -> a__isList#(V1) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U71#(tt(),P) -> a__isPal#(P) p2: a__isPal#(V) -> a__isNePal#(V) p3: a__isNePal#(__(I,__(P,I))) -> a__U71#(a__isQid(I),P) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The set of usable rules consists of r26, r27, r28, r29, r30, r72 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U71#_A(x1,x2) = x2 + (2,6) tt_A() = (2,4) a__isPal#_A(x1) = x1 + (1,6) a__isNePal#_A(x1) = x1 ___A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (3,3) a__isQid_A(x1) = ((0,0),(1,0)) x1 + (7,7) a_A() = (1,0) e_A() = (3,1) i_A() = (1,1) o_A() = (1,2) u_A() = (1,1) isQid_A(x1) = (1,1) precedence: u > isQid > a = e = i > tt = __ = a__isQid = o > a__U71# = a__isPal# = a__isNePal# partial status: pi(a__U71#) = [2] pi(tt) = [] pi(a__isPal#) = [1] pi(a__isNePal#) = [] pi(__) = [] pi(a__isQid) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U71#(tt(),P) -> a__isPal#(P) p2: a__isNePal#(__(I,__(P,I))) -> a__U71#(a__isQid(I),P) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__U11(tt()) -> tt() r5: a__U21(tt(),V2) -> a__U22(a__isList(V2)) r6: a__U22(tt()) -> tt() r7: a__U31(tt()) -> tt() r8: a__U41(tt(),V2) -> a__U42(a__isNeList(V2)) r9: a__U42(tt()) -> tt() r10: a__U51(tt(),V2) -> a__U52(a__isList(V2)) r11: a__U52(tt()) -> tt() r12: a__U61(tt()) -> tt() r13: a__U71(tt(),P) -> a__U72(a__isPal(P)) r14: a__U72(tt()) -> tt() r15: a__U81(tt()) -> tt() r16: a__isList(V) -> a__U11(a__isNeList(V)) r17: a__isList(nil()) -> tt() r18: a__isList(__(V1,V2)) -> a__U21(a__isList(V1),V2) r19: a__isNeList(V) -> a__U31(a__isQid(V)) r20: a__isNeList(__(V1,V2)) -> a__U41(a__isList(V1),V2) r21: a__isNeList(__(V1,V2)) -> a__U51(a__isNeList(V1),V2) r22: a__isNePal(V) -> a__U61(a__isQid(V)) r23: a__isNePal(__(I,__(P,I))) -> a__U71(a__isQid(I),P) r24: a__isPal(V) -> a__U81(a__isNePal(V)) r25: a__isPal(nil()) -> tt() r26: a__isQid(a()) -> tt() r27: a__isQid(e()) -> tt() r28: a__isQid(i()) -> tt() r29: a__isQid(o()) -> tt() r30: a__isQid(u()) -> tt() r31: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r32: mark(U11(X)) -> a__U11(mark(X)) r33: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r34: mark(U22(X)) -> a__U22(mark(X)) r35: mark(isList(X)) -> a__isList(X) r36: mark(U31(X)) -> a__U31(mark(X)) r37: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r38: mark(U42(X)) -> a__U42(mark(X)) r39: mark(isNeList(X)) -> a__isNeList(X) r40: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r41: mark(U52(X)) -> a__U52(mark(X)) r42: mark(U61(X)) -> a__U61(mark(X)) r43: mark(U71(X1,X2)) -> a__U71(mark(X1),X2) r44: mark(U72(X)) -> a__U72(mark(X)) r45: mark(isPal(X)) -> a__isPal(X) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(isQid(X)) -> a__isQid(X) r48: mark(isNePal(X)) -> a__isNePal(X) r49: mark(nil()) -> nil() r50: mark(tt()) -> tt() r51: mark(a()) -> a() r52: mark(e()) -> e() r53: mark(i()) -> i() r54: mark(o()) -> o() r55: mark(u()) -> u() r56: a____(X1,X2) -> __(X1,X2) r57: a__U11(X) -> U11(X) r58: a__U21(X1,X2) -> U21(X1,X2) r59: a__U22(X) -> U22(X) r60: a__isList(X) -> isList(X) r61: a__U31(X) -> U31(X) r62: a__U41(X1,X2) -> U41(X1,X2) r63: a__U42(X) -> U42(X) r64: a__isNeList(X) -> isNeList(X) r65: a__U51(X1,X2) -> U51(X1,X2) r66: a__U52(X) -> U52(X) r67: a__U61(X) -> U61(X) r68: a__U71(X1,X2) -> U71(X1,X2) r69: a__U72(X) -> U72(X) r70: a__isPal(X) -> isPal(X) r71: a__U81(X) -> U81(X) r72: a__isQid(X) -> isQid(X) r73: a__isNePal(X) -> isNePal(X) The estimated dependency graph contains the following SCCs: (no SCCs)