YES We show the termination of the TRS R: U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(N,|0|()) -> U31(isNat(N),N) plus(N,s(M)) -> U41(isNat(M),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> U12#(isNat(activate(V2))) p2: U11#(tt(),V2) -> isNat#(activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: U31#(tt(),N) -> activate#(N) p5: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p6: U41#(tt(),M,N) -> isNat#(activate(N)) p7: U41#(tt(),M,N) -> activate#(N) p8: U41#(tt(),M,N) -> activate#(M) p9: U42#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p10: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p11: U42#(tt(),M,N) -> activate#(N) p12: U42#(tt(),M,N) -> activate#(M) p13: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p14: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p15: isNat#(n__plus(V1,V2)) -> activate#(V1) p16: isNat#(n__plus(V1,V2)) -> activate#(V2) p17: isNat#(n__s(V1)) -> U21#(isNat(activate(V1))) p18: isNat#(n__s(V1)) -> isNat#(activate(V1)) p19: isNat#(n__s(V1)) -> activate#(V1) p20: plus#(N,|0|()) -> U31#(isNat(N),N) p21: plus#(N,|0|()) -> isNat#(N) p22: plus#(N,s(M)) -> U41#(isNat(M),M,N) p23: plus#(N,s(M)) -> isNat#(M) p24: activate#(n__0()) -> |0|#() p25: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p26: activate#(n__plus(X1,X2)) -> activate#(X1) p27: activate#(n__plus(X1,X2)) -> activate#(X2) p28: activate#(n__s(X)) -> s#(activate(X)) p29: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p10, p11, p12, p13, p14, p15, p16, p18, p19, p20, p21, p22, p23, p25, p26, p27, p29} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p12: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p13: U11#(tt(),V2) -> activate#(V2) p14: plus#(N,s(M)) -> U41#(isNat(M),M,N) p15: U41#(tt(),M,N) -> activate#(M) p16: U41#(tt(),M,N) -> activate#(N) p17: U41#(tt(),M,N) -> isNat#(activate(N)) p18: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p19: U42#(tt(),M,N) -> activate#(M) p20: U42#(tt(),M,N) -> activate#(N) p21: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p22: plus#(N,|0|()) -> isNat#(N) p23: plus#(N,|0|()) -> U31#(isNat(N),N) p24: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (8,2) tt_A() = (7,1) isNat#_A(x1) = ((1,0),(0,0)) x1 + (5,2) activate_A(x1) = x1 + (0,2) n__s_A(x1) = ((1,0),(0,0)) x1 + (4,0) activate#_A(x1) = ((1,0),(0,0)) x1 + (8,2) n__plus_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (14,4) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (9,2) s_A(x1) = ((1,0),(0,0)) x1 + (4,0) isNat_A(x1) = ((0,1),(0,0)) x1 + (9,5) U41#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (12,2) U42#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (10,2) |0|_A() = (6,2) U31#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (8,2) U42_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (18,2) plus_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (14,4) U12_A(x1) = (8,2) U31_A(x1,x2) = x2 + (7,3) U41_A(x1,x2,x3) = ((1,0),(0,0)) x2 + x3 + (18,4) U11_A(x1,x2) = (12,2) U21_A(x1) = (8,1) n__0_A() = (6,0) precedence: isNat > activate = n__plus = plus = U31 > U41 > U11# = isNat# = activate# = plus# = s = U41# = U42# = U31# = U42 > |0| > U11 = n__0 > tt = n__s = U21 > U12 partial status: pi(U11#) = [] pi(tt) = [] pi(isNat#) = [] pi(activate) = [1] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [1] pi(plus#) = [] pi(s) = [] pi(isNat) = [] pi(U41#) = [] pi(U42#) = [] pi(|0|) = [] pi(U31#) = [] pi(U42) = [] pi(plus) = [1] pi(U12) = [] pi(U31) = [2] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p12: U11#(tt(),V2) -> activate#(V2) p13: plus#(N,s(M)) -> U41#(isNat(M),M,N) p14: U41#(tt(),M,N) -> activate#(M) p15: U41#(tt(),M,N) -> activate#(N) p16: U41#(tt(),M,N) -> isNat#(activate(N)) p17: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p18: U42#(tt(),M,N) -> activate#(M) p19: U42#(tt(),M,N) -> activate#(N) p20: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p21: plus#(N,|0|()) -> isNat#(N) p22: plus#(N,|0|()) -> U31#(isNat(N),N) p23: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,|0|()) -> U31#(isNat(N),N) p6: U31#(tt(),N) -> activate#(N) p7: activate#(n__plus(X1,X2)) -> activate#(X2) p8: activate#(n__s(X)) -> activate#(X) p9: plus#(N,|0|()) -> isNat#(N) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> isNat#(activate(V1)) p14: isNat#(n__s(V1)) -> activate#(V1) p15: plus#(N,s(M)) -> U41#(isNat(M),M,N) p16: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p17: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p18: plus#(N,s(M)) -> isNat#(M) p19: U42#(tt(),M,N) -> activate#(N) p20: U42#(tt(),M,N) -> activate#(M) p21: U41#(tt(),M,N) -> isNat#(activate(N)) p22: U41#(tt(),M,N) -> activate#(N) p23: U41#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((1,1),(0,0)) x2 + (9,13) tt_A() = (4,1) isNat#_A(x1) = ((1,1),(0,0)) x1 + (6,13) activate_A(x1) = x1 n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (3,2) isNat_A(x1) = ((0,1),(1,1)) x1 + (9,13) activate#_A(x1) = ((1,0),(0,0)) x1 + (8,13) plus#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (10,13) |0|_A() = (5,0) U31#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (5,13) n__s_A(x1) = x1 + (7,3) s_A(x1) = x1 + (7,3) U41#_A(x1,x2,x3) = ((1,1),(0,0)) x2 + ((1,1),(0,0)) x3 + (12,13) U42#_A(x1,x2,x3) = ((1,1),(0,0)) x2 + ((1,1),(0,0)) x3 + (11,13) U42_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(0,1)) x3 + (11,5) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (3,2) U12_A(x1) = (5,2) U31_A(x1,x2) = ((1,1),(0,1)) x2 + (1,7) U41_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(0,1)) x3 + (12,5) U11_A(x1,x2) = (6,2) U21_A(x1) = (7,3) n__0_A() = (5,0) precedence: tt = U21 > U12 > |0| = U42# = n__0 > activate# = plus# = U31# > U11# = isNat# > isNat = U11 > U31 > n__plus = plus = U41 > activate = n__s = s = U41# = U42 partial status: pi(U11#) = [] pi(tt) = [] pi(isNat#) = [] pi(activate) = [1] pi(n__plus) = [] pi(isNat) = [] pi(activate#) = [] pi(plus#) = [] pi(|0|) = [] pi(U31#) = [] pi(n__s) = [] pi(s) = [] pi(U41#) = [] pi(U42#) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p16 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,|0|()) -> U31#(isNat(N),N) p6: U31#(tt(),N) -> activate#(N) p7: activate#(n__plus(X1,X2)) -> activate#(X2) p8: activate#(n__s(X)) -> activate#(X) p9: plus#(N,|0|()) -> isNat#(N) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> isNat#(activate(V1)) p14: isNat#(n__s(V1)) -> activate#(V1) p15: plus#(N,s(M)) -> U41#(isNat(M),M,N) p16: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p17: plus#(N,s(M)) -> isNat#(M) p18: U42#(tt(),M,N) -> activate#(N) p19: U42#(tt(),M,N) -> activate#(M) p20: U41#(tt(),M,N) -> isNat#(activate(N)) p21: U41#(tt(),M,N) -> activate#(N) p22: U41#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p17, p20, p21, p22} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p12: U11#(tt(),V2) -> activate#(V2) p13: plus#(N,s(M)) -> U41#(isNat(M),M,N) p14: U41#(tt(),M,N) -> activate#(M) p15: U41#(tt(),M,N) -> activate#(N) p16: U41#(tt(),M,N) -> isNat#(activate(N)) p17: plus#(N,|0|()) -> isNat#(N) p18: plus#(N,|0|()) -> U31#(isNat(N),N) p19: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((1,1),(0,1)) x2 + (7,0) tt_A() = (0,1) isNat#_A(x1) = ((1,1),(0,1)) x1 + (4,0) activate_A(x1) = x1 n__s_A(x1) = x1 + (9,12) activate#_A(x1) = ((0,1),(0,1)) x1 + (6,0) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,1),(1,1)) x2 + (3,0) plus#_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,1)) x2 + (6,0) s_A(x1) = x1 + (9,12) isNat_A(x1) = ((0,0),(1,1)) x1 + (8,14) U41#_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((1,1),(0,1)) x3 + (6,0) |0|_A() = (9,1) U31#_A(x1,x2) = ((0,1),(0,1)) x2 + (10,1) U42_A(x1,x2,x3) = ((0,1),(1,1)) x2 + ((1,0),(1,1)) x3 + (13,12) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,1),(1,1)) x2 + (3,0) U12_A(x1) = (1,2) U31_A(x1,x2) = x2 + (0,2) U41_A(x1,x2,x3) = ((0,1),(1,1)) x2 + ((1,0),(1,1)) x3 + (14,13) U11_A(x1,x2) = (2,2) U21_A(x1) = (1,1) n__0_A() = (9,1) precedence: isNat = U11 > activate = n__plus = s = U42 = plus = U31 = U41 > U12 > n__s = U21 > |0| > U41# > activate# = n__0 > U11# = isNat# > plus# = U31# > tt partial status: pi(U11#) = [] pi(tt) = [] pi(isNat#) = [] pi(activate) = [1] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [2] pi(s) = [] pi(isNat) = [] pi(U41#) = [] pi(|0|) = [] pi(U31#) = [] pi(U42) = [] pi(plus) = [1] pi(U12) = [] pi(U31) = [2] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p15 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p12: U11#(tt(),V2) -> activate#(V2) p13: plus#(N,s(M)) -> U41#(isNat(M),M,N) p14: U41#(tt(),M,N) -> activate#(M) p15: U41#(tt(),M,N) -> isNat#(activate(N)) p16: plus#(N,|0|()) -> isNat#(N) p17: plus#(N,|0|()) -> U31#(isNat(N),N) p18: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,|0|()) -> U31#(isNat(N),N) p6: U31#(tt(),N) -> activate#(N) p7: activate#(n__plus(X1,X2)) -> activate#(X2) p8: activate#(n__s(X)) -> activate#(X) p9: plus#(N,|0|()) -> isNat#(N) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> isNat#(activate(V1)) p14: isNat#(n__s(V1)) -> activate#(V1) p15: plus#(N,s(M)) -> U41#(isNat(M),M,N) p16: U41#(tt(),M,N) -> isNat#(activate(N)) p17: U41#(tt(),M,N) -> activate#(M) p18: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = x1 + ((0,1),(0,1)) x2 + (2,2) tt_A() = (8,8) isNat#_A(x1) = ((0,1),(0,1)) x1 + (9,10) activate_A(x1) = x1 n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x2 + (0,9) isNat_A(x1) = ((1,0),(0,0)) x1 + (15,12) activate#_A(x1) = ((0,1),(0,1)) x1 + (9,0) plus#_A(x1,x2) = ((0,1),(1,1)) x1 + ((0,1),(0,1)) x2 + (11,9) |0|_A() = (1,3) U31#_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,1),(1,1)) x2 + (9,0) n__s_A(x1) = ((0,0),(0,1)) x1 + (1,2) s_A(x1) = ((0,0),(0,1)) x1 + (1,2) U41#_A(x1,x2,x3) = ((0,1),(0,0)) x1 + ((0,1),(0,1)) x2 + ((0,1),(1,1)) x3 + (1,10) U42_A(x1,x2,x3) = ((0,0),(0,1)) x2 + ((1,0),(1,1)) x3 + (1,11) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x2 + (0,9) U12_A(x1) = (9,9) U31_A(x1,x2) = x2 U41_A(x1,x2,x3) = ((0,0),(0,1)) x2 + ((1,0),(1,1)) x3 + (1,11) U11_A(x1,x2) = ((0,1),(0,0)) x1 + (2,10) U21_A(x1) = (9,8) n__0_A() = (1,3) precedence: activate = n__plus = s = U42 = plus = U31 = U41 > n__s > isNat = U12 = U11 > U21 > U11# = tt = isNat# = activate# = plus# = |0| = U31# = U41# = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(isNat#) = [] pi(activate) = [] pi(n__plus) = [] pi(isNat) = [] pi(activate#) = [] pi(plus#) = [] pi(|0|) = [] pi(U31#) = [] pi(n__s) = [] pi(s) = [] pi(U41#) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,|0|()) -> U31#(isNat(N),N) p6: U31#(tt(),N) -> activate#(N) p7: activate#(n__plus(X1,X2)) -> activate#(X2) p8: activate#(n__s(X)) -> activate#(X) p9: plus#(N,|0|()) -> isNat#(N) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: isNat#(n__plus(V1,V2)) -> activate#(V2) p12: isNat#(n__s(V1)) -> isNat#(activate(V1)) p13: isNat#(n__s(V1)) -> activate#(V1) p14: plus#(N,s(M)) -> U41#(isNat(M),M,N) p15: U41#(tt(),M,N) -> isNat#(activate(N)) p16: U41#(tt(),M,N) -> activate#(M) p17: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p11: U11#(tt(),V2) -> activate#(V2) p12: plus#(N,s(M)) -> U41#(isNat(M),M,N) p13: U41#(tt(),M,N) -> activate#(M) p14: U41#(tt(),M,N) -> isNat#(activate(N)) p15: plus#(N,|0|()) -> isNat#(N) p16: plus#(N,|0|()) -> U31#(isNat(N),N) p17: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((1,0),(1,1)) x2 + (2,0) tt_A() = (0,2) isNat#_A(x1) = ((1,0),(1,1)) x1 + (2,0) activate_A(x1) = x1 n__s_A(x1) = x1 + (0,3) activate#_A(x1) = ((1,0),(1,1)) x1 + (2,0) n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (4,4) plus#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (2,1) s_A(x1) = x1 + (0,3) isNat_A(x1) = ((0,1),(0,0)) x1 + (3,4) U41#_A(x1,x2,x3) = ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (2,4) |0|_A() = (0,1) U31#_A(x1,x2) = ((1,0),(1,1)) x2 + (2,1) U42_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(0,1)) x3 + (5,7) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (4,4) U12_A(x1) = (1,3) U31_A(x1,x2) = x2 + (1,2) U41_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(0,1)) x3 + (6,7) U11_A(x1,x2) = (2,3) U21_A(x1) = (1,2) n__0_A() = (0,1) precedence: U11# = activate = n__s = n__plus = s = U42 = plus = U41 > isNat = U11 > plus# > U41# > U31# > isNat# = activate# > U31 > tt = U12 > |0| = U21 = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(isNat#) = [1] pi(activate) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(isNat) = [] pi(U41#) = [] pi(|0|) = [] pi(U31#) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [2] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: U11#(tt(),V2) -> activate#(V2) p11: plus#(N,s(M)) -> U41#(isNat(M),M,N) p12: U41#(tt(),M,N) -> activate#(M) p13: U41#(tt(),M,N) -> isNat#(activate(N)) p14: plus#(N,|0|()) -> isNat#(N) p15: plus#(N,|0|()) -> U31#(isNat(N),N) p16: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> U31#(isNat(N),N) p4: U31#(tt(),N) -> activate#(N) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__s(X)) -> activate#(X) p7: plus#(N,|0|()) -> isNat#(N) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__s(V1)) -> isNat#(activate(V1)) p11: plus#(N,s(M)) -> U41#(isNat(M),M,N) p12: U41#(tt(),M,N) -> isNat#(activate(N)) p13: U41#(tt(),M,N) -> activate#(M) p14: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 + (20,3) n__s_A(x1) = x1 + (12,2) activate#_A(x1) = ((1,0),(0,0)) x1 + (20,3) n__plus_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (0,6) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (20,3) activate_A(x1) = x1 + (0,5) |0|_A() = (0,8) U31#_A(x1,x2) = ((1,0),(0,0)) x2 + (20,3) isNat_A(x1) = ((1,1),(0,1)) x1 + (13,2) tt_A() = (19,3) s_A(x1) = x1 + (12,2) U41#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (21,3) U42_A(x1,x2,x3) = ((1,0),(1,0)) x2 + x3 + (12,13) plus_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (0,6) U12_A(x1) = (19,4) U31_A(x1,x2) = x2 + (0,5) U41_A(x1,x2,x3) = ((1,0),(1,0)) x2 + x3 + (12,18) U11_A(x1,x2) = (19,4) U21_A(x1) = ((1,0),(0,0)) x1 + (1,4) n__0_A() = (0,7) precedence: isNat# = activate# = plus# = U31# > isNat = U11 > U21 > tt = U12 > n__plus = activate = plus = U31 > U41# > n__s = |0| = s = U42 = U41 = n__0 partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [1] pi(plus#) = [] pi(activate) = [1] pi(|0|) = [] pi(U31#) = [] pi(isNat) = [] pi(tt) = [] pi(s) = [] pi(U41#) = [] pi(U42) = [] pi(plus) = [1] pi(U12) = [] pi(U31) = [2] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> U31#(isNat(N),N) p4: U31#(tt(),N) -> activate#(N) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__s(X)) -> activate#(X) p7: plus#(N,|0|()) -> isNat#(N) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__s(V1)) -> isNat#(activate(V1)) p11: U41#(tt(),M,N) -> isNat#(activate(N)) p12: U41#(tt(),M,N) -> activate#(M) p13: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> activate#(X2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: plus#(N,|0|()) -> isNat#(N) p10: plus#(N,|0|()) -> U31#(isNat(N),N) p11: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((1,1),(0,1)) x1 + (3,4) n__s_A(x1) = x1 + (2,2) activate#_A(x1) = x1 + (1,1) n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,1)) x2 + (6,2) plus#_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,1)) x2 + (1,2) activate_A(x1) = x1 s_A(x1) = x1 + (2,2) |0|_A() = (4,3) U31#_A(x1,x2) = x2 + (2,4) isNat_A(x1) = ((1,1),(1,1)) x1 + (9,3) tt_A() = (10,1) U42_A(x1,x2,x3) = ((1,1),(0,1)) x2 + ((1,1),(0,1)) x3 + (9,4) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,1)) x2 + (6,2) U12_A(x1) = ((0,1),(0,0)) x1 + (10,2) U31_A(x1,x2) = x2 + (5,5) U41_A(x1,x2,x3) = ((1,1),(0,1)) x2 + ((1,1),(0,1)) x3 + (9,4) U11_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,0)) x2 + (4,2) U21_A(x1) = x1 n__0_A() = (4,3) precedence: activate = isNat = plus = U31 = U11 > U12 > U41 > |0| > U42 > U21 = n__0 > n__plus > s > n__s > isNat# = activate# = plus# = U31# = tt partial status: pi(isNat#) = [1] pi(n__s) = [1] pi(activate#) = [] pi(n__plus) = [2] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(|0|) = [] pi(U31#) = [] pi(isNat) = [] pi(tt) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> activate#(X2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: plus#(N,|0|()) -> isNat#(N) p9: plus#(N,|0|()) -> U31#(isNat(N),N) p10: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> U31#(isNat(N),N) p4: U31#(tt(),N) -> activate#(N) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__s(X)) -> activate#(X) p7: plus#(N,|0|()) -> isNat#(N) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((0,1),(0,0)) x1 + (11,4) n__s_A(x1) = ((0,1),(0,1)) x1 + (6,0) activate#_A(x1) = ((0,1),(0,0)) x1 + (11,4) n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (10,0) plus#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (11,4) activate_A(x1) = ((1,1),(0,1)) x1 + (7,0) |0|_A() = (7,2) U31#_A(x1,x2) = ((0,1),(0,0)) x2 + (12,4) isNat_A(x1) = ((0,1),(1,0)) x1 + (6,0) tt_A() = (3,3) s_A(x1) = ((0,1),(0,1)) x1 + (6,0) U42_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (8,0) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (10,0) U12_A(x1) = (4,4) U31_A(x1,x2) = ((1,1),(0,1)) x2 + (8,1) U41_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (9,0) U11_A(x1,x2) = ((0,1),(0,0)) x2 + (5,7) U21_A(x1) = ((1,0),(1,0)) x1 n__0_A() = (3,2) precedence: |0| > n__0 > isNat = U12 = U11 > n__s = n__plus = activate = s = U42 = plus = U41 > U31 > isNat# = activate# = plus# > U31# > tt = U21 partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [1] pi(|0|) = [] pi(U31#) = [] pi(isNat) = [] pi(tt) = [] pi(s) = [] pi(U42) = [] pi(plus) = [] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> U31#(isNat(N),N) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__s(X)) -> activate#(X) p6: plus#(N,|0|()) -> isNat#(N) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> activate#(X2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 + (2,2) n__s_A(x1) = ((1,0),(0,0)) x1 + (7,2) activate#_A(x1) = ((1,0),(0,0)) x1 + (1,2) n__plus_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (0,6) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (0,2) activate_A(x1) = x1 + (0,6) s_A(x1) = ((1,0),(0,0)) x1 + (7,4) |0|_A() = (3,1) U12_A(x1) = ((0,0),(0,1)) x1 + (4,0) tt_A() = (4,3) U11_A(x1,x2) = (6,3) isNat_A(x1) = (6,3) U21_A(x1) = (5,3) U42_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (7,4) plus_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (0,6) U31_A(x1,x2) = x2 + (2,6) U41_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (7,5) n__0_A() = (3,1) precedence: activate = U21 = plus = U31 > U41 > U12 = tt > U42 > n__s = activate# = n__plus = s = |0| = n__0 > isNat > isNat# = plus# = U11 partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(|0|) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(plus) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> activate#(X2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: plus#(N,s(M)) -> isNat#(M) p6: activate#(n__plus(X1,X2)) -> activate#(X2) p7: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((0,1),(0,1)) x1 + (4,1) n__s_A(x1) = ((0,0),(0,1)) x1 + (3,4) activate#_A(x1) = ((0,1),(0,1)) x1 + (7,5) n__plus_A(x1,x2) = x1 + x2 + (6,0) plus#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (5,1) activate_A(x1) = x1 |0|_A() = (2,0) s_A(x1) = ((0,0),(0,1)) x1 + (3,4) U12_A(x1) = (9,1) tt_A() = (8,0) U11_A(x1,x2) = (10,5) isNat_A(x1) = (10,5) U21_A(x1) = (9,5) U42_A(x1,x2,x3) = ((0,0),(0,1)) x2 + ((0,0),(0,1)) x3 + (7,4) plus_A(x1,x2) = x1 + x2 + (6,0) U31_A(x1,x2) = x2 + (1,0) U41_A(x1,x2,x3) = ((0,0),(0,1)) x2 + x3 + (8,4) n__0_A() = (2,0) precedence: n__plus = activate = U42 = plus = U31 = U41 > |0| > isNat = U21 = n__0 > U12 > tt > isNat# = n__s = activate# = plus# = s = U11 partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [1] pi(|0|) = [] pi(s) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(plus) = [1] pi(U31) = [2] pi(U41) = [] pi(n__0) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: plus#(N,s(M)) -> isNat#(M) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> activate#(X2) p4: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p5: plus#(N,s(M)) -> isNat#(M) p6: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 n__s_A(x1) = ((1,0),(0,0)) x1 + (0,2) activate#_A(x1) = ((1,0),(0,0)) x1 n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (3,2) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (1,0) activate_A(x1) = x1 + (0,1) s_A(x1) = ((1,0),(0,0)) x1 + (0,2) |0|_A() = (1,2) U12_A(x1) = (2,0) tt_A() = (2,0) U11_A(x1,x2) = (4,1) isNat_A(x1) = ((1,0),(0,0)) x1 + (5,2) U21_A(x1) = (3,2) U42_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (3,2) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (3,2) U31_A(x1,x2) = ((1,0),(1,1)) x2 + (2,3) U41_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (3,2) n__0_A() = (1,2) precedence: n__s = activate = s = U12 = tt = isNat = U21 = U42 = plus = U31 = U41 > |0| = n__0 > U11 > n__plus > isNat# = activate# = plus# partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(|0|) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(plus) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> isNat#(M) p5: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: plus#(N,s(M)) -> isNat#(M) p5: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((0,1),(0,0)) x1 + (2,0) n__s_A(x1) = ((0,0),(0,1)) x1 activate#_A(x1) = ((0,1),(0,0)) x1 n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (8,9) plus#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (8,0) activate_A(x1) = ((1,1),(0,1)) x1 + (16,0) |0|_A() = (1,11) s_A(x1) = ((0,1),(0,1)) x1 + (3,0) U12_A(x1) = (13,8) tt_A() = (13,8) U11_A(x1,x2) = (14,10) isNat_A(x1) = (15,11) U21_A(x1) = (14,8) U42_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (0,9) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (16,9) U31_A(x1,x2) = ((1,1),(0,1)) x2 + (17,1) U41_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((1,1),(0,1)) x3 + (15,9) n__0_A() = (1,11) precedence: n__s = activate = s = U42 = plus = U31 = U41 > |0| = U12 = tt = U11 = U21 = n__0 > isNat > isNat# = activate# = plus# > n__plus partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(|0|) = [] pi(s) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(plus) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,s(M)) -> isNat#(M) p4: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 n__s_A(x1) = ((1,0),(0,0)) x1 + (4,3) activate#_A(x1) = ((1,0),(0,0)) x1 n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (2,0) plus#_A(x1,x2) = ((1,0),(0,0)) x2 + (1,0) activate_A(x1) = x1 s_A(x1) = ((1,0),(0,0)) x1 + (4,3) U12_A(x1) = (0,2) tt_A() = (0,2) U11_A(x1,x2) = ((1,0),(0,0)) x1 + (0,4) isNat_A(x1) = x1 + (3,4) U21_A(x1) = (1,2) U42_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,1),(0,0)) x3 + (6,3) plus_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (2,0) U31_A(x1,x2) = ((1,1),(1,1)) x2 + (1,1) U41_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,1),(0,1)) x3 + (6,3) n__0_A() = (4,1) |0|_A() = (4,1) precedence: U12 = tt = U11 = isNat = U21 = n__0 = |0| > isNat# = activate# = plus# > n__plus = plus = U31 > activate = U42 = U41 > n__s = s partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [1] pi(s) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [1] pi(U21) = [] pi(U42) = [] pi(plus) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((0,1),(0,0)) x1 + (6,4) n__s_A(x1) = ((0,0),(0,1)) x1 + (5,3) activate#_A(x1) = ((0,1),(0,0)) x1 + (2,4) n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (9,5) plus#_A(x1,x2) = ((0,1),(0,0)) x2 + (4,4) activate_A(x1) = ((1,1),(0,1)) x1 + (8,0) s_A(x1) = ((0,0),(0,1)) x1 + (5,3) U12_A(x1) = (2,9) tt_A() = (1,8) U11_A(x1,x2) = ((0,0),(0,1)) x2 + (3,9) isNat_A(x1) = ((0,1),(0,1)) x1 + (4,10) U21_A(x1) = (6,8) U42_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((0,0),(0,1)) x3 + (6,8) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (10,5) U31_A(x1,x2) = ((1,1),(0,1)) x2 + (9,12) U41_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (7,8) n__0_A() = (5,7) |0|_A() = (5,7) precedence: U21 > n__plus = activate = plus = U31 = U41 = |0| > U42 > U12 = U11 = isNat > n__0 > tt > isNat# = activate# = plus# > n__s = s partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [1] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(plus) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs)