YES We show the termination of the TRS R: U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(N,|0|()) -> U31(isNat(N),N) plus(N,s(M)) -> U41(isNat(M),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> U12#(isNat(activate(V2))) p2: U11#(tt(),V2) -> isNat#(activate(V2)) p3: U11#(tt(),V2) -> activate#(V2) p4: U31#(tt(),N) -> activate#(N) p5: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p6: U41#(tt(),M,N) -> isNat#(activate(N)) p7: U41#(tt(),M,N) -> activate#(N) p8: U41#(tt(),M,N) -> activate#(M) p9: U42#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p10: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p11: U42#(tt(),M,N) -> activate#(N) p12: U42#(tt(),M,N) -> activate#(M) p13: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p14: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p15: isNat#(n__plus(V1,V2)) -> activate#(V1) p16: isNat#(n__plus(V1,V2)) -> activate#(V2) p17: isNat#(n__s(V1)) -> U21#(isNat(activate(V1))) p18: isNat#(n__s(V1)) -> isNat#(activate(V1)) p19: isNat#(n__s(V1)) -> activate#(V1) p20: plus#(N,|0|()) -> U31#(isNat(N),N) p21: plus#(N,|0|()) -> isNat#(N) p22: plus#(N,s(M)) -> U41#(isNat(M),M,N) p23: plus#(N,s(M)) -> isNat#(M) p24: activate#(n__0()) -> |0|#() p25: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p26: activate#(n__s(X)) -> s#(X) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p10, p11, p12, p13, p14, p15, p16, p18, p19, p20, p21, p22, p23, p25} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) p10: U11#(tt(),V2) -> activate#(V2) p11: plus#(N,s(M)) -> U41#(isNat(M),M,N) p12: U41#(tt(),M,N) -> activate#(M) p13: U41#(tt(),M,N) -> activate#(N) p14: U41#(tt(),M,N) -> isNat#(activate(N)) p15: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p16: U42#(tt(),M,N) -> activate#(M) p17: U42#(tt(),M,N) -> activate#(N) p18: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p19: plus#(N,|0|()) -> isNat#(N) p20: plus#(N,|0|()) -> U31#(isNat(N),N) p21: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(0,0)) x2 + (29,33) tt_A() = (19,1) isNat#_A(x1) = ((1,1),(0,0)) x1 + (25,34) activate_A(x1) = x1 + (1,2) n__s_A(x1) = ((0,1),(1,0)) x1 + (0,31) activate#_A(x1) = ((1,1),(0,0)) x1 + (20,34) n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (0,12) plus#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (14,34) s_A(x1) = ((0,1),(1,0)) x1 + (0,33) isNat_A(x1) = (36,1) U41#_A(x1,x2,x3) = ((1,1),(0,1)) x1 + ((1,1),(0,0)) x2 + ((1,1),(0,0)) x3 + (9,33) U42#_A(x1,x2,x3) = ((1,1),(0,0)) x2 + ((1,1),(0,0)) x3 + (21,34) |0|_A() = (19,2) U31#_A(x1,x2) = ((1,1),(0,0)) x2 + (21,34) U42_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (19,39) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (0,12) U12_A(x1) = (19,1) U31_A(x1,x2) = x2 + (20,3) U41_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (26,45) U11_A(x1,x2) = (19,1) U21_A(x1) = ((0,0),(0,1)) x1 + (20,0) n__0_A() = (19,2) precedence: U11# > isNat# = activate# = plus# = U41# = U42# > isNat = U11 = U21 > U12 > n__plus = plus = U41 > U42 > tt = |0| = U31# = U31 = n__0 > activate = s > n__s partial status: pi(U11#) = [] pi(tt) = [] pi(isNat#) = [] pi(activate) = [1] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [2] pi(plus#) = [] pi(s) = [] pi(isNat) = [] pi(U41#) = [] pi(U42#) = [] pi(|0|) = [] pi(U31#) = [] pi(U42) = [2] pi(plus) = [2] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V2) -> isNat#(activate(V2)) p2: isNat#(n__s(V1)) -> activate#(V1) p3: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: U11#(tt(),V2) -> activate#(V2) p10: plus#(N,s(M)) -> U41#(isNat(M),M,N) p11: U41#(tt(),M,N) -> activate#(M) p12: U41#(tt(),M,N) -> activate#(N) p13: U41#(tt(),M,N) -> isNat#(activate(N)) p14: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p15: U42#(tt(),M,N) -> activate#(M) p16: U42#(tt(),M,N) -> activate#(N) p17: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p18: plus#(N,|0|()) -> isNat#(N) p19: plus#(N,|0|()) -> U31#(isNat(N),N) p20: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U31#(isNat(N),N) p4: U31#(tt(),N) -> activate#(N) p5: plus#(N,|0|()) -> isNat#(N) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: plus#(N,s(M)) -> U41#(isNat(M),M,N) p11: U41#(tt(),M,N) -> U42#(isNat(activate(N)),activate(M),activate(N)) p12: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p13: plus#(N,s(M)) -> isNat#(M) p14: U42#(tt(),M,N) -> activate#(N) p15: U42#(tt(),M,N) -> activate#(M) p16: U41#(tt(),M,N) -> isNat#(activate(N)) p17: U41#(tt(),M,N) -> activate#(N) p18: U41#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((0,1),(0,0)) x1 + (20,0) n__s_A(x1) = x1 + (18,11) activate#_A(x1) = ((0,1),(0,0)) x1 + (20,0) n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (19,0) plus#_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (20,0) |0|_A() = (20,0) U31#_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,1),(0,0)) x2 isNat_A(x1) = ((1,0),(0,0)) x1 + (15,4) tt_A() = (27,3) activate_A(x1) = x1 + (2,0) s_A(x1) = x1 + (18,11) U41#_A(x1,x2,x3) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + ((1,1),(0,0)) x3 + (24,0) U42#_A(x1,x2,x3) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + ((1,1),(0,0)) x3 + (20,0) U42_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (43,15) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (20,0) U12_A(x1) = ((0,1),(0,0)) x1 + (25,4) U31_A(x1,x2) = ((1,1),(0,1)) x2 + (21,1) U41_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (48,19) U11_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (27,4) U21_A(x1) = (28,4) n__0_A() = (19,0) precedence: U41# > isNat# = activate# = n__plus = plus# = U31# = plus > isNat = U41 = U11 > U42# > U21 > |0| = tt = activate = U42 = U12 = n__0 > s > n__s > U31 partial status: pi(isNat#) = [] pi(n__s) = [1] pi(activate#) = [] pi(n__plus) = [1, 2] pi(plus#) = [] pi(|0|) = [] pi(U31#) = [] pi(isNat) = [] pi(tt) = [] pi(activate) = [] pi(s) = [1] pi(U41#) = [] pi(U42#) = [] pi(U42) = [] pi(plus) = [1, 2] pi(U12) = [] pi(U31) = [] pi(U41) = [2] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U31#(isNat(N),N) p4: U31#(tt(),N) -> activate#(N) p5: plus#(N,|0|()) -> isNat#(N) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: plus#(N,s(M)) -> U41#(isNat(M),M,N) p11: U42#(tt(),M,N) -> plus#(activate(N),activate(M)) p12: plus#(N,s(M)) -> isNat#(M) p13: U42#(tt(),M,N) -> activate#(N) p14: U42#(tt(),M,N) -> activate#(M) p15: U41#(tt(),M,N) -> isNat#(activate(N)) p16: U41#(tt(),M,N) -> activate#(N) p17: U41#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p12, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,s(M)) -> isNat#(M) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__plus(V1,V2)) -> activate#(V1) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: plus#(N,s(M)) -> U41#(isNat(M),M,N) p9: U41#(tt(),M,N) -> activate#(M) p10: U41#(tt(),M,N) -> activate#(N) p11: U41#(tt(),M,N) -> isNat#(activate(N)) p12: plus#(N,|0|()) -> isNat#(N) p13: plus#(N,|0|()) -> U31#(isNat(N),N) p14: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 + (16,30) n__s_A(x1) = x1 + (36,29) activate#_A(x1) = ((1,0),(0,0)) x1 + (16,30) n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (0,30) plus#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (16,30) s_A(x1) = x1 + (36,38) activate_A(x1) = x1 + (0,9) U41#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,1),(0,0)) x3 + (37,30) isNat_A(x1) = ((0,0),(0,1)) x1 + (75,14) tt_A() = (17,22) |0|_A() = (0,30) U31#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (1,30) U42_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (55,87) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (0,31) U12_A(x1) = (17,22) U31_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(1,1)) x2 + (1,31) U41_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (74,105) U11_A(x1,x2) = ((1,0),(0,0)) x1 + ((0,0),(0,1)) x2 + (0,22) U21_A(x1) = (37,22) n__0_A() = (0,21) precedence: n__plus = activate = plus = U31 > U42 = U41 > |0| > isNat = U11 = U21 = n__0 > isNat# = activate# = plus# = U41# = U31# > tt = U12 > n__s = s partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [2] pi(plus#) = [] pi(s) = [1] pi(activate) = [1] pi(U41#) = [] pi(isNat) = [] pi(tt) = [] pi(|0|) = [] pi(U31#) = [] pi(U42) = [] pi(plus) = [2] pi(U12) = [] pi(U31) = [] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: isNat#(n__s(V1)) -> isNat#(activate(V1)) p4: isNat#(n__plus(V1,V2)) -> activate#(V2) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: plus#(N,s(M)) -> U41#(isNat(M),M,N) p8: U41#(tt(),M,N) -> activate#(M) p9: U41#(tt(),M,N) -> activate#(N) p10: U41#(tt(),M,N) -> isNat#(activate(N)) p11: plus#(N,|0|()) -> isNat#(N) p12: plus#(N,|0|()) -> U31#(isNat(N),N) p13: U31#(tt(),N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U31#(isNat(N),N) p4: U31#(tt(),N) -> activate#(N) p5: plus#(N,|0|()) -> isNat#(N) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: plus#(N,s(M)) -> U41#(isNat(M),M,N) p11: U41#(tt(),M,N) -> isNat#(activate(N)) p12: U41#(tt(),M,N) -> activate#(N) p13: U41#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((1,1),(1,1)) x1 + (47,49) n__s_A(x1) = ((0,1),(1,0)) x1 + (1,48) activate#_A(x1) = ((1,0),(1,1)) x1 + (2,48) n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (75,93) plus#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) |0|_A() = (55,0) U31#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,48) isNat_A(x1) = (57,53) tt_A() = (49,53) activate_A(x1) = x1 + (2,1) s_A(x1) = ((0,1),(1,0)) x1 + (2,49) U41#_A(x1,x2,x3) = ((1,0),(1,1)) x2 + ((1,1),(1,1)) x3 + (51,52) U42_A(x1,x2,x3) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,131) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (76,94) U12_A(x1) = (50,53) U31_A(x1,x2) = ((1,0),(1,1)) x2 + (56,1) U41_A(x1,x2,x3) = ((1,1),(1,0)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (16,88) U11_A(x1,x2) = (56,53) U21_A(x1) = (50,53) n__0_A() = (54,0) precedence: |0| > isNat# = n__0 > activate# = plus# = U31# = isNat = U41# = U21 > tt = U12 = U11 > activate = plus = U31 > n__s = n__plus = s = U42 = U41 partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [1] pi(plus#) = [1] pi(|0|) = [] pi(U31#) = [] pi(isNat) = [] pi(tt) = [] pi(activate) = [1] pi(s) = [] pi(U41#) = [] pi(U42) = [] pi(plus) = [1] pi(U12) = [] pi(U31) = [2] pi(U41) = [2] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: U31#(tt(),N) -> activate#(N) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p6: isNat#(n__plus(V1,V2)) -> activate#(V1) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: plus#(N,s(M)) -> U41#(isNat(M),M,N) p10: U41#(tt(),M,N) -> isNat#(activate(N)) p11: U41#(tt(),M,N) -> activate#(N) p12: U41#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,s(M)) -> U41#(isNat(M),M,N) p4: U41#(tt(),M,N) -> activate#(M) p5: U41#(tt(),M,N) -> activate#(N) p6: U41#(tt(),M,N) -> isNat#(activate(N)) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = x1 n__s_A(x1) = x1 + (2,0) activate#_A(x1) = x1 n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (2,2) plus#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(0,1)) x2 + (0,1) s_A(x1) = x1 + (2,0) U41#_A(x1,x2,x3) = ((0,1),(0,0)) x1 + x2 + ((1,0),(1,1)) x3 + (0,1) isNat_A(x1) = ((0,0),(0,1)) x1 + (0,2) tt_A() = (0,0) activate_A(x1) = x1 |0|_A() = (0,0) U42_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (4,2) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (2,2) U12_A(x1) = (0,1) U31_A(x1,x2) = ((1,0),(1,1)) x2 + (1,1) U41_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (4,2) U11_A(x1,x2) = (0,1) U21_A(x1) = (0,1) n__0_A() = (0,0) precedence: s = activate = |0| = U42 = plus = U31 = U41 = n__0 > isNat = U12 = U11 = U21 > n__s = n__plus > isNat# = activate# = plus# = U41# = tt partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [1, 2] pi(s) = [] pi(U41#) = [3] pi(isNat) = [] pi(tt) = [] pi(activate) = [1] pi(|0|) = [] pi(U42) = [] pi(plus) = [1] pi(U12) = [] pi(U31) = [2] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,s(M)) -> U41#(isNat(M),M,N) p4: U41#(tt(),M,N) -> activate#(N) p5: U41#(tt(),M,N) -> isNat#(activate(N)) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: plus#(N,s(M)) -> U41#(isNat(M),M,N) p9: U41#(tt(),M,N) -> isNat#(activate(N)) p10: U41#(tt(),M,N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((1,1),(1,1)) x1 + (6,60) n__s_A(x1) = ((0,1),(1,0)) x1 + (0,67) activate#_A(x1) = ((1,1),(1,1)) x1 + (3,36) n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (4,36) plus#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(1,0)) x2 + (5,68) |0|_A() = (1,14) activate_A(x1) = x1 + (7,1) s_A(x1) = ((0,1),(1,0)) x1 + (0,67) U41#_A(x1,x2,x3) = ((0,1),(0,0)) x1 + ((1,1),(1,1)) x3 + (1,68) isNat_A(x1) = ((0,0),(0,1)) x1 + (6,1) tt_A() = (1,14) U42_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (53,87) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (4,36) U12_A(x1) = (2,15) U31_A(x1,x2) = ((1,1),(0,1)) x2 + (8,15) U41_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (70,103) U11_A(x1,x2) = ((0,0),(1,1)) x2 + (3,29) U21_A(x1) = (6,68) n__0_A() = (0,13) precedence: isNat# = activate# = plus# = |0| > U41# > n__plus = isNat = tt = plus = U41 = U21 > activate = U31 > s = U42 > n__s = n__0 > U12 = U11 partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate#) = [] pi(n__plus) = [1] pi(plus#) = [] pi(|0|) = [] pi(activate) = [1] pi(s) = [] pi(U41#) = [] pi(isNat) = [] pi(tt) = [] pi(U42) = [] pi(plus) = [1] pi(U12) = [] pi(U31) = [2] pi(U41) = [] pi(U11) = [] pi(U21) = [] pi(n__0) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: U41#(tt(),M,N) -> isNat#(activate(N)) p9: U41#(tt(),M,N) -> activate#(N) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__s(V1)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__plus(V1,V2)) -> activate#(V1) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((1,1),(1,1)) x1 + (21,25) n__s_A(x1) = x1 + (27,31) activate#_A(x1) = ((1,1),(0,1)) x1 + (29,32) n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (30,32) plus#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,1)) x2 + (19,24) |0|_A() = (2,1) activate_A(x1) = x1 + (4,3) U12_A(x1) = (2,1) tt_A() = (0,0) U11_A(x1,x2) = (3,1) isNat_A(x1) = (29,2) U21_A(x1) = (28,2) U42_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (75,77) s_A(x1) = x1 + (30,31) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (30,32) U31_A(x1,x2) = ((1,1),(0,1)) x2 + (5,3) U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (90,91) n__0_A() = (1,0) precedence: plus = U41 > U42 = s > n__plus = plus# > isNat# > n__s = activate# = activate = U11 = isNat = U21 = U31 > tt > |0| = U12 > n__0 partial status: pi(isNat#) = [1] pi(n__s) = [1] pi(activate#) = [1] pi(n__plus) = [1, 2] pi(plus#) = [1, 2] pi(|0|) = [] pi(activate) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(s) = [] pi(plus) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> activate#(V1) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: isNat#(n__s(V1)) -> isNat#(activate(V1)) p4: isNat#(n__plus(V1,V2)) -> activate#(V2) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p2: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((0,1),(1,1)) x1 + (1,49) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,1),(1,1)) x2 + (7,6) activate_A(x1) = x1 + (8,1) n__s_A(x1) = x1 + (28,57) U12_A(x1) = (85,71) tt_A() = (84,70) U11_A(x1,x2) = (86,71) isNat_A(x1) = ((1,1),(0,0)) x1 + (74,72) U21_A(x1) = (85,70) U42_A(x1,x2,x3) = ((0,1),(1,1)) x2 + ((1,0),(1,1)) x3 + (61,82) s_A(x1) = x1 + (36,58) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,1),(1,1)) x2 + (15,6) U31_A(x1,x2) = x2 + (15,2) U41_A(x1,x2,x3) = ((0,1),(0,0)) x1 + ((0,1),(1,1)) x2 + ((1,0),(1,1)) x3 + (0,100) n__0_A() = (14,1) |0|_A() = (14,1) precedence: isNat > tt = n__0 = |0| > isNat# = n__plus = activate = plus = U31 = U41 > U42 > s > U12 = U11 > U21 > n__s partial status: pi(isNat#) = [] pi(n__plus) = [] pi(activate) = [] pi(n__s) = [] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(s) = [] pi(plus) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),V2) -> U12(isNat(activate(V2))) r2: U12(tt()) -> tt() r3: U21(tt()) -> tt() r4: U31(tt(),N) -> activate(N) r5: U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) r6: U42(tt(),M,N) -> s(plus(activate(N),activate(M))) r7: isNat(n__0()) -> tt() r8: isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) r9: isNat(n__s(V1)) -> U21(isNat(activate(V1))) r10: plus(N,|0|()) -> U31(isNat(N),N) r11: plus(N,s(M)) -> U41(isNat(M),M,N) r12: |0|() -> n__0() r13: plus(X1,X2) -> n__plus(X1,X2) r14: s(X) -> n__s(X) r15: activate(n__0()) -> |0|() r16: activate(n__plus(X1,X2)) -> plus(X1,X2) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((1,0),(0,0)) x1 + (1,0) n__s_A(x1) = ((1,0),(0,0)) x1 + (2,5) activate_A(x1) = x1 + (0,3) U12_A(x1) = (4,0) tt_A() = (4,0) U11_A(x1,x2) = (5,7) isNat_A(x1) = ((0,1),(1,1)) x1 + (0,7) U21_A(x1) = (5,6) U42_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (4,5) s_A(x1) = ((1,0),(0,0)) x1 + (2,5) plus_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (2,6) U31_A(x1,x2) = x2 + (1,5) U41_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (4,6) n__0_A() = (5,4) n__plus_A(x1,x2) = x1 + ((1,0),(0,0)) x2 + (2,6) |0|_A() = (5,4) precedence: U11 = isNat = U21 > plus = n__0 = n__plus = |0| > U31 > U12 = tt > isNat# = activate > n__s = U42 = s = U41 partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate) = [1] pi(U12) = [] pi(tt) = [] pi(U11) = [] pi(isNat) = [] pi(U21) = [] pi(U42) = [] pi(s) = [] pi(plus) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] pi(n__plus) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.