YES We show the termination of the TRS R: U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) and(tt(),X) -> activate(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(N,|0|()) -> U11(isNat(N),N) plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) isNat(X) -> n__isNat(X) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: U21#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: U21#(tt(),M,N) -> activate#(N) p5: U21#(tt(),M,N) -> activate#(M) p6: and#(tt(),X) -> activate#(X) p7: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: plus#(N,|0|()) -> U11#(isNat(N),N) p14: plus#(N,|0|()) -> isNat#(N) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p17: plus#(N,s(M)) -> isNat#(M) p18: activate#(n__0()) -> |0|#() p19: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p20: activate#(n__plus(X1,X2)) -> activate#(X1) p21: activate#(n__plus(X1,X2)) -> activate#(X2) p22: activate#(n__isNat(X)) -> isNat#(X) p23: activate#(n__s(X)) -> s#(activate(X)) p24: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p19, p20, p21, p22, p24} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__isNat(X)) -> isNat#(X) p4: isNat#(n__s(V1)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X2) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p8: plus#(N,s(M)) -> isNat#(M) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p13: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p14: and#(tt(),X) -> activate#(X) p15: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p16: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p17: U21#(tt(),M,N) -> activate#(M) p18: U21#(tt(),M,N) -> activate#(N) p19: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p20: plus#(N,|0|()) -> isNat#(N) p21: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((0,1),(0,1)) x2 + (22,18) tt_A() = (13,21) activate#_A(x1) = ((0,1),(0,1)) x1 + (22,13) n__s_A(x1) = ((0,0),(0,1)) x1 + (22,21) n__isNat_A(x1) = ((0,0),(0,1)) x1 + (25,4) isNat#_A(x1) = ((0,1),(0,1)) x1 + (12,17) n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (11,25) plus#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (5,26) activate_A(x1) = ((1,1),(0,1)) x1 + (34,0) s_A(x1) = ((0,0),(0,1)) x1 + (24,21) and#_A(x1,x2) = ((0,1),(1,0)) x1 + ((0,1),(0,1)) x2 + (2,0) isNat_A(x1) = ((0,1),(0,1)) x1 + (38,4) U21#_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (23,26) and_A(x1,x2) = ((1,1),(1,1)) x2 + (34,0) |0|_A() = (2,17) U11_A(x1,x2) = ((1,1),(0,1)) x2 + (35,18) U21_A(x1,x2,x3) = ((0,0),(0,1)) x2 + ((0,0),(0,1)) x3 + (35,46) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (36,25) n__0_A() = (1,17) precedence: U11# = tt = activate# = n__s = n__isNat = isNat# = n__plus = plus# = activate = s = and# = isNat = U21# = and = |0| = U11 = U21 = plus = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__s) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(and#) = [] pi(isNat) = [] pi(U21#) = [] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__isNat(X)) -> isNat#(X) p4: isNat#(n__s(V1)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p12: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p13: and#(tt(),X) -> activate#(X) p14: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: U21#(tt(),M,N) -> activate#(M) p17: U21#(tt(),M,N) -> activate#(N) p18: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p19: plus#(N,|0|()) -> isNat#(N) p20: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__isNat(X)) -> isNat#(X) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: activate#(n__s(X)) -> activate#(X) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> isNat#(activate(V1)) p14: isNat#(n__s(V1)) -> activate#(V1) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p17: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p18: plus#(N,s(M)) -> isNat#(M) p19: U21#(tt(),M,N) -> activate#(N) p20: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (1,3) tt_A() = (1,2) activate#_A(x1) = ((1,0),(0,0)) x1 + (3,3) n__plus_A(x1,x2) = x1 + ((1,1),(0,1)) x2 + (0,4) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (3,3) activate_A(x1) = x1 |0|_A() = (2,3) isNat_A(x1) = ((1,0),(0,0)) x1 + (2,4) isNat#_A(x1) = ((1,0),(0,0)) x1 + (5,3) and#_A(x1,x2) = ((1,0),(0,0)) x2 + (3,3) n__isNat_A(x1) = ((1,0),(0,0)) x1 + (2,4) n__s_A(x1) = x1 + (2,2) s_A(x1) = x1 + (2,2) U21#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (5,3) and_A(x1,x2) = x2 U11_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (3,0) U21_A(x1,x2,x3) = ((1,1),(0,1)) x2 + x3 + (3,6) plus_A(x1,x2) = x1 + ((1,1),(0,1)) x2 + (0,4) n__0_A() = (2,3) precedence: tt = activate = |0| = isNat = n__isNat = and = U11 > n__s = s = U21 = plus > n__0 > U11# = activate# = n__plus = plus# = isNat# = and# = U21# partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(|0|) = [] pi(isNat) = [] pi(isNat#) = [] pi(and#) = [] pi(n__isNat) = [] pi(n__s) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,|0|()) -> isNat#(N) p5: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p6: and#(tt(),X) -> activate#(X) p7: activate#(n__plus(X1,X2)) -> activate#(X1) p8: activate#(n__isNat(X)) -> isNat#(X) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> activate#(V1) p11: activate#(n__s(X)) -> activate#(X) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> activate#(V1) p14: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p15: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p16: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p17: plus#(N,s(M)) -> isNat#(M) p18: U21#(tt(),M,N) -> activate#(N) p19: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__isNat(X)) -> isNat#(X) p4: isNat#(n__s(V1)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p12: and#(tt(),X) -> activate#(X) p13: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p14: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p15: U21#(tt(),M,N) -> activate#(M) p16: U21#(tt(),M,N) -> activate#(N) p17: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p18: plus#(N,|0|()) -> isNat#(N) p19: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((0,1),(0,1)) x2 + (19,6) tt_A() = (15,6) activate#_A(x1) = ((0,1),(0,1)) x1 + (18,6) n__s_A(x1) = ((0,0),(0,1)) x1 + (8,0) n__isNat_A(x1) = ((0,0),(0,1)) x1 + (1,1) isNat#_A(x1) = ((0,1),(0,1)) x1 + (18,6) n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (22,0) plus#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (18,6) activate_A(x1) = ((1,1),(0,1)) x1 + (9,0) s_A(x1) = ((0,0),(0,1)) x1 + (16,0) and#_A(x1,x2) = x1 + ((1,1),(0,1)) x2 + (4,4) isNat_A(x1) = ((0,1),(0,1)) x1 + (11,1) U21#_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (18,6) and_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,1)) x2 + (8,0) |0|_A() = (20,5) U11_A(x1,x2) = ((1,1),(0,1)) x2 + (21,5) U21_A(x1,x2,x3) = ((0,0),(0,1)) x2 + ((0,1),(0,1)) x3 + (16,0) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (22,0) n__0_A() = (7,5) precedence: tt = activate# = n__isNat = isNat# = plus# = activate = and# = isNat = U21# = and = |0| = n__0 > U11# = plus > n__plus > U21 > n__s = s > U11 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__s) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(and#) = [] pi(isNat) = [] pi(U21#) = [] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p19 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__isNat(X)) -> isNat#(X) p4: isNat#(n__s(V1)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p12: and#(tt(),X) -> activate#(X) p13: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p14: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p15: U21#(tt(),M,N) -> activate#(M) p16: U21#(tt(),M,N) -> activate#(N) p17: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p18: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p5: and#(tt(),X) -> activate#(X) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: activate#(n__isNat(X)) -> isNat#(X) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> activate#(V1) p12: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p13: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p14: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p15: plus#(N,s(M)) -> isNat#(M) p16: U21#(tt(),M,N) -> activate#(N) p17: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,1)) x1 + (4,3) n__s_A(x1) = x1 n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,1)) x2 + (5,0) plus#_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (4,3) activate_A(x1) = x1 |0|_A() = (1,0) isNat#_A(x1) = ((0,1),(0,1)) x1 + (4,3) and#_A(x1,x2) = ((1,0),(1,0)) x1 + ((0,1),(0,1)) x2 + (1,0) isNat_A(x1) = ((1,1),(0,1)) x1 + (2,1) n__isNat_A(x1) = ((1,1),(0,1)) x1 + (2,1) tt_A() = (3,0) s_A(x1) = x1 U21#_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((0,1),(0,1)) x3 + (4,3) and_A(x1,x2) = x2 + (1,0) U11_A(x1,x2) = x2 + (2,1) U21_A(x1,x2,x3) = ((0,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (5,0) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,1)) x2 + (5,0) n__0_A() = (1,0) precedence: activate = isNat = and > tt > |0| > plus > n__plus = n__0 > U11 > activate# = plus# = isNat# = and# = U21# > n__isNat > n__s = s = U21 partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [1] pi(plus#) = [] pi(activate) = [] pi(|0|) = [] pi(isNat#) = [] pi(and#) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p5: and#(tt(),X) -> activate#(X) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__s(V1)) -> activate#(V1) p11: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p12: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p13: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p14: plus#(N,s(M)) -> isNat#(M) p15: U21#(tt(),M,N) -> activate#(N) p16: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p10: and#(tt(),X) -> activate#(X) p11: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p12: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p13: U21#(tt(),M,N) -> activate#(M) p14: U21#(tt(),M,N) -> activate#(N) p15: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p16: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,1),(1,1)) x1 + (1,10) n__s_A(x1) = ((0,1),(1,0)) x1 + (3,10) n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,0)) x2 + (15,22) plus#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,47) activate_A(x1) = x1 s_A(x1) = ((0,1),(1,0)) x1 + (3,10) isNat#_A(x1) = ((1,1),(1,1)) x1 + (14,22) and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,10) isNat_A(x1) = ((0,0),(1,1)) x1 + (6,1) n__isNat_A(x1) = ((0,0),(1,1)) x1 + (6,1) tt_A() = (6,9) U21#_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (2,47) and_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (0,24) |0|_A() = (5,8) U11_A(x1,x2) = ((1,1),(1,1)) x2 + (1,9) U21_A(x1,x2,x3) = x2 + ((1,1),(1,1)) x3 + (25,25) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,0)) x2 + (15,22) n__0_A() = (5,8) precedence: activate = isNat = and = U11 > n__plus = s = n__isNat = U21 = plus > |0| = n__0 > plus# = U21# > isNat# > activate# > and# > tt > n__s partial status: pi(activate#) = [1] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(isNat#) = [1] pi(and#) = [2] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U21#) = [3] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [1] pi(n__0) = [] The next rules are strictly ordered: p15 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p10: and#(tt(),X) -> activate#(X) p11: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p12: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p13: U21#(tt(),M,N) -> activate#(M) p14: U21#(tt(),M,N) -> activate#(N) p15: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p5: and#(tt(),X) -> activate#(X) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__s(V1)) -> activate#(V1) p11: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p12: U21#(tt(),M,N) -> activate#(N) p13: U21#(tt(),M,N) -> activate#(M) p14: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p15: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,1)) x1 + (5,4) n__s_A(x1) = x1 n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 + (6,0) plus#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (5,4) activate_A(x1) = x1 |0|_A() = (3,1) isNat#_A(x1) = ((1,1),(0,1)) x1 + (5,4) and#_A(x1,x2) = ((0,1),(1,0)) x1 + ((0,1),(0,1)) x2 + (5,0) isNat_A(x1) = ((1,0),(1,0)) x1 + (4,0) n__isNat_A(x1) = ((1,0),(1,0)) x1 + (4,0) tt_A() = (4,3) s_A(x1) = x1 U21#_A(x1,x2,x3) = ((0,1),(0,0)) x1 + ((1,1),(1,1)) x2 + ((0,1),(0,1)) x3 + (3,4) and_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (1,1) U11_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (4,0) U21_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,0),(1,1)) x3 + (6,0) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 + (6,0) n__0_A() = (3,1) precedence: activate# = plus# = isNat# = and# = U11 > activate = U21 = plus > s > n__s = n__plus = |0| = isNat = n__isNat = tt = U21# = and = n__0 partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [1] pi(|0|) = [] pi(isNat#) = [] pi(and#) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p5: and#(tt(),X) -> activate#(X) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__s(V1)) -> activate#(V1) p11: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p12: U21#(tt(),M,N) -> activate#(M) p13: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p14: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p10: and#(tt(),X) -> activate#(X) p11: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p12: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p13: U21#(tt(),M,N) -> activate#(M) p14: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,0)) x1 + (15,14) n__s_A(x1) = ((0,0),(0,1)) x1 + (14,8) n__plus_A(x1,x2) = x1 + ((0,1),(0,1)) x2 + (26,13) plus#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (27,14) activate_A(x1) = x1 + (36,0) s_A(x1) = ((0,0),(0,1)) x1 + (32,8) isNat#_A(x1) = ((0,1),(0,0)) x1 + (32,14) and#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (1,14) isNat_A(x1) = (36,15) n__isNat_A(x1) = (0,15) tt_A() = (36,15) U21#_A(x1,x2,x3) = ((0,1),(0,0)) x2 + (31,14) and_A(x1,x2) = ((1,0),(0,0)) x1 + x2 |0|_A() = (37,13) U11_A(x1,x2) = x2 + (38,14) U21_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + ((0,0),(0,1)) x3 + (33,6) plus_A(x1,x2) = x1 + ((0,1),(0,1)) x2 + (26,13) n__0_A() = (1,13) precedence: isNat# > activate# > U21# > plus# > n__s = n__plus = activate = s = and# = isNat = n__isNat = tt = and = |0| = U11 = U21 = plus = n__0 partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(isNat#) = [] pi(and#) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U21#) = [] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p10: and#(tt(),X) -> activate#(X) p11: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p12: U21#(tt(),M,N) -> activate#(M) p13: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p5: and#(tt(),X) -> activate#(X) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> activate#(V2) p10: isNat#(n__s(V1)) -> activate#(V1) p11: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p12: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = x1 n__s_A(x1) = x1 + (8,0) n__plus_A(x1,x2) = x1 + ((1,1),(0,1)) x2 + (6,0) plus#_A(x1,x2) = x1 + x2 + (5,0) activate_A(x1) = x1 |0|_A() = (4,1) isNat#_A(x1) = x1 + (8,0) and#_A(x1,x2) = x2 + (2,0) isNat_A(x1) = (5,0) n__isNat_A(x1) = (5,0) tt_A() = (5,0) s_A(x1) = x1 + (8,0) U11_A(x1,x2) = x2 + (5,1) U21_A(x1,x2,x3) = ((1,1),(0,1)) x2 + x3 + (14,0) plus_A(x1,x2) = x1 + ((1,1),(0,1)) x2 + (6,0) and_A(x1,x2) = x2 n__0_A() = (4,1) precedence: activate = isNat = and > |0| = n__0 > U11 = U21 = plus > n__isNat = s > and# > activate# = n__s = n__plus = plus# = isNat# = tt partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [1, 2] pi(activate) = [] pi(|0|) = [] pi(isNat#) = [1] pi(and#) = [2] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(s) = [1] pi(U11) = [] pi(U21) = [] pi(plus) = [1, 2] pi(and) = [] pi(n__0) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: and#(tt(),X) -> activate#(X) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> activate#(V2) p9: isNat#(n__s(V1)) -> activate#(V1) p10: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p11: plus#(N,s(M)) -> isNat#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> activate#(V1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p10: and#(tt(),X) -> activate#(X) p11: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,1)) x1 + (21,17) n__s_A(x1) = ((0,0),(0,1)) x1 + (14,16) n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (11,0) plus#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (20,10) activate_A(x1) = ((1,1),(0,1)) x1 + (16,0) s_A(x1) = ((0,0),(0,1)) x1 + (25,16) isNat#_A(x1) = ((0,1),(0,1)) x1 + (26,17) and#_A(x1,x2) = ((1,1),(1,1)) x2 + (22,17) isNat_A(x1) = ((0,1),(0,1)) x1 + (13,1) n__isNat_A(x1) = ((0,0),(0,1)) x1 + (1,1) tt_A() = (20,8) |0|_A() = (14,7) U11_A(x1,x2) = ((1,1),(0,1)) x2 + (17,1) U21_A(x1,x2,x3) = ((0,0),(0,1)) x2 + ((0,1),(0,1)) x3 + (26,16) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (11,0) and_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,1)) x2 + (9,0) n__0_A() = (1,7) precedence: activate# = n__s = n__plus = plus# = activate = s = isNat# = and# = isNat = n__isNat = tt = |0| = U11 = U21 = plus = and = n__0 partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(isNat#) = [] pi(and#) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(and) = [] pi(n__0) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: isNat#(n__s(V1)) -> activate#(V1) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: isNat#(n__plus(V1,V2)) -> activate#(V1) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p9: and#(tt(),X) -> activate#(X) p10: plus#(N,|0|()) -> isNat#(N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__s(V1)) -> activate#(V1) p9: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p10: and#(tt(),X) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,0)) x1 + (2,5) n__s_A(x1) = x1 + (16,18) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,1),(1,1)) x2 plus#_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (1,5) activate_A(x1) = x1 |0|_A() = (2,4) isNat#_A(x1) = ((1,1),(0,0)) x1 + (5,5) s_A(x1) = x1 + (16,18) and#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (1,5) isNat_A(x1) = (17,7) n__isNat_A(x1) = (17,7) tt_A() = (1,5) U11_A(x1,x2) = x2 + (3,5) U21_A(x1,x2,x3) = ((0,1),(1,1)) x2 + ((1,0),(1,1)) x3 + (17,18) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,1),(1,1)) x2 and_A(x1,x2) = x2 n__0_A() = (2,4) precedence: activate = isNat = n__isNat = U11 = plus = and > |0| = n__0 > tt > U21 > n__s = s > activate# = n__plus = plus# = isNat# = and# partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(|0|) = [] pi(isNat#) = [] pi(s) = [] pi(and#) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(and) = [] pi(n__0) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p5: isNat#(n__plus(V1,V2)) -> activate#(V1) p6: activate#(n__plus(X1,X2)) -> activate#(X1) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p9: and#(tt(),X) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p5: and#(tt(),X) -> activate#(X) p6: plus#(N,|0|()) -> isNat#(N) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,0),(0,0)) x1 + (12,3) n__s_A(x1) = ((1,0),(0,0)) x1 + (17,3) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (3,10) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (4,3) activate_A(x1) = ((1,0),(1,1)) x1 + (0,4) s_A(x1) = ((1,0),(0,0)) x1 + (17,10) and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (12,3) isNat_A(x1) = (2,10) n__isNat_A(x1) = (2,4) tt_A() = (1,2) |0|_A() = (5,10) isNat#_A(x1) = ((1,0),(0,0)) x1 + (9,3) U11_A(x1,x2) = ((1,0),(1,1)) x2 + (7,11) U21_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (20,11) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (3,11) and_A(x1,x2) = ((1,0),(1,1)) x2 + (0,4) n__0_A() = (5,1) precedence: n__s = activate = s = isNat = n__isNat = |0| = U11 = U21 = plus = and > activate# = n__plus = plus# = and# = isNat# > n__0 > tt partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(and#) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(|0|) = [] pi(isNat#) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(and) = [] pi(n__0) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> activate#(X1) p3: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p4: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p5: and#(tt(),X) -> activate#(X) p6: plus#(N,|0|()) -> isNat#(N) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p3: plus#(N,|0|()) -> isNat#(N) p4: isNat#(n__plus(V1,V2)) -> activate#(V1) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p8: and#(tt(),X) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,0)) x1 + (6,0) n__s_A(x1) = ((0,0),(0,1)) x1 + (0,1) n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (7,0) plus#_A(x1,x2) = ((0,1),(0,0)) x1 + (6,0) activate_A(x1) = ((1,1),(0,1)) x1 + (3,0) |0|_A() = (5,1) isNat#_A(x1) = ((0,1),(0,0)) x1 + (6,0) s_A(x1) = ((0,0),(0,1)) x1 + (1,1) and#_A(x1,x2) = ((0,1),(0,0)) x2 + (6,0) isNat_A(x1) = (11,0) n__isNat_A(x1) = (8,0) tt_A() = (2,0) U11_A(x1,x2) = ((1,1),(0,1)) x2 + (4,1) U21_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + ((1,1),(0,1)) x3 + (4,1) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (7,0) and_A(x1,x2) = ((1,1),(0,1)) x2 + (3,0) n__0_A() = (1,1) precedence: n__plus = activate = isNat = U11 = plus = and > U21 > |0| = n__0 > n__s = s = tt > activate# = plus# = isNat# = and# = n__isNat partial status: pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(|0|) = [] pi(isNat#) = [] pi(s) = [] pi(and#) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(and) = [] pi(n__0) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,|0|()) -> isNat#(N) p3: isNat#(n__plus(V1,V2)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: isNat#(n__plus(V1,V2)) -> activate#(V2) p6: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p7: and#(tt(),X) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p3: and#(tt(),X) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: plus#(N,|0|()) -> isNat#(N) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,1)) x1 + (4,0) n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (5,3) plus#_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,0)) x2 + (6,2) activate_A(x1) = x1 s_A(x1) = ((0,1),(1,0)) x1 + (2,1) and#_A(x1,x2) = ((0,1),(0,1)) x2 + (5,0) isNat_A(x1) = (7,2) n__isNat_A(x1) = (7,2) tt_A() = (6,2) |0|_A() = (8,1) isNat#_A(x1) = ((1,1),(0,1)) x1 + (7,0) U11_A(x1,x2) = ((1,0),(1,1)) x2 + (1,2) U21_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (6,6) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (5,3) and_A(x1,x2) = x2 n__0_A() = (8,1) n__s_A(x1) = ((0,1),(1,0)) x1 + (2,1) precedence: plus# = activate = isNat = n__isNat = |0| = U11 = and = n__0 > and# = tt > activate# = isNat# > s = U21 = plus = n__s > n__plus partial status: pi(activate#) = [] pi(n__plus) = [2] pi(plus#) = [] pi(activate) = [] pi(s) = [] pi(and#) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(|0|) = [] pi(isNat#) = [1] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(and) = [] pi(n__0) = [] pi(n__s) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p3: and#(tt(),X) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: plus#(N,|0|()) -> isNat#(N) p6: isNat#(n__plus(V1,V2)) -> activate#(V2) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,|0|()) -> isNat#(N) p3: isNat#(n__plus(V1,V2)) -> activate#(V2) p4: activate#(n__plus(X1,X2)) -> activate#(X1) p5: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p6: and#(tt(),X) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((0,1),(0,1)) x1 + (9,8) n__plus_A(x1,x2) = x1 + ((0,0),(0,1)) x2 + (8,0) plus#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (4,8) activate_A(x1) = x1 + (6,0) |0|_A() = (6,7) isNat#_A(x1) = ((0,1),(0,1)) x1 + (10,8) s_A(x1) = ((0,0),(0,1)) x1 + (2,0) and#_A(x1,x2) = ((0,1),(1,0)) x1 + ((0,1),(0,1)) x2 + (3,3) isNat_A(x1) = ((0,1),(0,1)) x1 + (5,0) n__isNat_A(x1) = ((0,1),(0,1)) x1 + (1,0) tt_A() = (5,7) U11_A(x1,x2) = x2 + (7,7) U21_A(x1,x2,x3) = ((0,0),(0,1)) x2 + ((0,0),(0,1)) x3 + (5,0) plus_A(x1,x2) = x1 + ((0,0),(0,1)) x2 + (8,0) and_A(x1,x2) = ((0,1),(0,1)) x1 + x2 + (2,0) n__0_A() = (1,7) n__s_A(x1) = ((0,0),(0,1)) x1 + (1,0) precedence: activate# = plus# = activate = |0| = and# = isNat = n__isNat = U11 = plus = and = n__0 > tt > s = U21 > n__plus > isNat# = n__s partial status: pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(activate) = [] pi(|0|) = [] pi(isNat#) = [] pi(s) = [] pi(and#) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(and) = [] pi(n__0) = [] pi(n__s) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: isNat#(n__plus(V1,V2)) -> activate#(V2) p3: activate#(n__plus(X1,X2)) -> activate#(X1) p4: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p5: and#(tt(),X) -> activate#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p3: and#(tt(),X) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = x1 + (2,1) n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,1)) x2 + (3,0) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (2,0) activate_A(x1) = ((1,1),(0,1)) x1 s_A(x1) = (9,8) and#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (2,0) isNat_A(x1) = (4,0) n__isNat_A(x1) = (4,0) tt_A() = (1,0) U11_A(x1,x2) = ((1,1),(0,1)) x2 + (13,6) U21_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,1),(0,1)) x3 + (9,8) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,1)) x2 + (3,0) and_A(x1,x2) = ((1,1),(0,1)) x2 |0|_A() = (5,6) n__0_A() = (0,6) n__s_A(x1) = (4,8) precedence: n__plus = activate = isNat = n__isNat = U11 = U21 = plus = and > |0| > tt > n__0 > s = n__s > plus# > activate# = and# partial status: pi(activate#) = [1] pi(n__plus) = [] pi(plus#) = [2] pi(activate) = [] pi(s) = [] pi(and#) = [2] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(and) = [] pi(|0|) = [] pi(n__0) = [] pi(n__s) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p2: and#(tt(),X) -> activate#(X) p3: activate#(n__plus(X1,X2)) -> activate#(X1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__plus(X1,X2)) -> activate#(X1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(activate(X)) r17: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = x1 + (1,1) n__plus_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (2,1) precedence: n__plus > activate# partial status: pi(activate#) = [1] pi(n__plus) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.