YES We show the termination of the TRS R: U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) and(tt(),X) -> activate(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(N,|0|()) -> U11(isNat(N),N) plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) isNat(X) -> n__isNat(X) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: U21#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p3: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p4: U21#(tt(),M,N) -> activate#(N) p5: U21#(tt(),M,N) -> activate#(M) p6: and#(tt(),X) -> activate#(X) p7: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: isNat#(n__plus(V1,V2)) -> activate#(V1) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: plus#(N,|0|()) -> U11#(isNat(N),N) p14: plus#(N,|0|()) -> isNat#(N) p15: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p16: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p17: plus#(N,s(M)) -> isNat#(M) p18: activate#(n__0()) -> |0|#() p19: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p20: activate#(n__isNat(X)) -> isNat#(X) p21: activate#(n__s(X)) -> s#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p19, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p13: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p14: U21#(tt(),M,N) -> activate#(M) p15: U21#(tt(),M,N) -> activate#(N) p16: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p17: plus#(N,|0|()) -> isNat#(N) p18: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((1,1),(0,0)) x2 + (2,0) tt_A() = (3,1) activate#_A(x1) = ((1,1),(0,0)) x1 + (2,0) n__isNat_A(x1) = ((0,1),(1,0)) x1 + (0,1) isNat#_A(x1) = ((1,1),(0,0)) x1 + (2,0) n__s_A(x1) = x1 n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,1)) x2 plus#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (2,0) s_A(x1) = x1 activate_A(x1) = x1 and#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,0)) x2 + (1,0) isNat_A(x1) = ((0,1),(1,0)) x1 + (0,1) U21#_A(x1,x2,x3) = ((1,1),(0,0)) x2 + ((1,1),(0,0)) x3 + (2,0) and_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 |0|_A() = (0,4) U11_A(x1,x2) = x2 + (4,4) U21_A(x1,x2,x3) = ((1,1),(0,1)) x2 + ((1,1),(0,1)) x3 plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,1)) x2 n__0_A() = (0,4) precedence: U11# = tt = activate# = n__isNat = isNat# = n__s = n__plus = plus# = s = activate = and# = isNat = U21# = and = |0| = U11 = U21 = plus = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(activate) = [] pi(and#) = [] pi(isNat) = [] pi(U21#) = [] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p17 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p13: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p14: U21#(tt(),M,N) -> activate#(M) p15: U21#(tt(),M,N) -> activate#(N) p16: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p17: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p5: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p6: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p7: and#(tt(),X) -> activate#(X) p8: activate#(n__isNat(X)) -> isNat#(X) p9: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> isNat#(activate(V1)) p14: isNat#(n__s(V1)) -> activate#(V1) p15: plus#(N,s(M)) -> isNat#(M) p16: U21#(tt(),M,N) -> activate#(N) p17: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((0,1),(0,0)) x2 + (21,10) tt_A() = (57,20) activate#_A(x1) = ((0,1),(0,0)) x1 + (21,10) n__plus_A(x1,x2) = x1 + x2 + (43,0) plus#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (3,10) |0|_A() = (1,18) isNat_A(x1) = ((0,1),(0,1)) x1 + (41,11) s_A(x1) = ((0,0),(0,1)) x1 + (25,20) U21#_A(x1,x2,x3) = ((0,1),(0,0)) x2 + ((0,1),(0,0)) x3 + (22,10) and_A(x1,x2) = ((1,1),(0,1)) x2 + (6,0) n__isNat_A(x1) = ((0,0),(0,1)) x1 + (24,11) activate_A(x1) = ((1,1),(0,1)) x1 + (6,0) and#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (1,10) isNat#_A(x1) = ((0,1),(0,0)) x1 + (23,10) n__s_A(x1) = ((0,0),(0,1)) x1 + (0,20) U11_A(x1,x2) = ((1,1),(0,1)) x2 + (7,18) U21_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((0,0),(0,1)) x2 + ((0,0),(0,1)) x3 + (26,20) plus_A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (43,0) n__0_A() = (0,18) precedence: |0| = n__0 > U21# > U11# = activate# = plus# = and# = isNat# > tt = isNat = and = activate > U11 > U21 = plus > s = n__s > n__isNat > n__plus partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(|0|) = [] pi(isNat) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(n__isNat) = [] pi(activate) = [] pi(and#) = [] pi(isNat#) = [] pi(n__s) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p16 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p5: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p6: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p7: and#(tt(),X) -> activate#(X) p8: activate#(n__isNat(X)) -> isNat#(X) p9: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p10: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p11: isNat#(n__plus(V1,V2)) -> activate#(V1) p12: isNat#(n__plus(V1,V2)) -> activate#(V2) p13: isNat#(n__s(V1)) -> isNat#(activate(V1)) p14: isNat#(n__s(V1)) -> activate#(V1) p15: plus#(N,s(M)) -> isNat#(M) p16: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p11: and#(tt(),X) -> activate#(X) p12: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p13: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p14: U21#(tt(),M,N) -> activate#(M) p15: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p16: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((1,1),(0,0)) x2 + (4,2) tt_A() = (0,1) activate#_A(x1) = ((0,1),(0,0)) x1 + (3,2) n__isNat_A(x1) = ((1,1),(1,1)) x1 + (8,2) isNat#_A(x1) = ((0,1),(0,0)) x1 + (4,2) n__s_A(x1) = x1 + (2,3) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (0,4) plus#_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (3,2) s_A(x1) = x1 + (2,4) activate_A(x1) = x1 + (0,1) and#_A(x1,x2) = ((0,1),(0,0)) x2 + (4,2) isNat_A(x1) = ((1,1),(1,1)) x1 + (8,2) U21#_A(x1,x2,x3) = ((0,1),(0,0)) x2 + ((1,1),(0,0)) x3 + (6,2) and_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (0,2) |0|_A() = (1,2) U11_A(x1,x2) = ((1,0),(1,1)) x2 + (1,1) U21_A(x1,x2,x3) = ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (2,10) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (0,4) n__0_A() = (1,1) precedence: activate = isNat = and = U11 = plus > tt > s = U21 > |0| > n__0 > n__s > U11# = activate# = n__isNat = isNat# = n__plus = plus# = and# = U21# partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(activate) = [] pi(and#) = [] pi(isNat) = [] pi(U21#) = [] pi(and) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V2) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p10: isNat#(n__plus(V1,V2)) -> and#(isNat(activate(V1)),n__isNat(activate(V2))) p11: plus#(N,s(M)) -> and#(isNat(M),n__isNat(N)) p12: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p13: U21#(tt(),M,N) -> activate#(M) p14: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p15: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p5: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: activate#(n__isNat(X)) -> isNat#(X) p10: isNat#(n__plus(V1,V2)) -> activate#(V2) p11: isNat#(n__s(V1)) -> isNat#(activate(V1)) p12: isNat#(n__s(V1)) -> activate#(V1) p13: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((1,0),(0,0)) x2 tt_A() = (0,0) activate#_A(x1) = ((1,0),(0,0)) x1 n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(1,0)) x2 + (2,1) plus#_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 |0|_A() = (0,0) isNat_A(x1) = ((1,0),(0,0)) x1 s_A(x1) = x1 U21#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 and_A(x1,x2) = x2 n__isNat_A(x1) = ((1,0),(0,0)) x1 activate_A(x1) = x1 isNat#_A(x1) = ((1,0),(0,0)) x1 n__s_A(x1) = x1 U11_A(x1,x2) = ((1,1),(0,1)) x2 + (1,1) U21_A(x1,x2,x3) = ((1,1),(1,0)) x2 + ((1,1),(0,1)) x3 + (2,1) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(1,0)) x2 + (2,1) n__0_A() = (0,0) precedence: U11# = tt = activate# = n__plus = plus# = |0| = isNat = s = U21# = and = n__isNat = activate = isNat# = n__s = U11 = U21 = plus = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(|0|) = [] pi(isNat) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(n__isNat) = [] pi(activate) = [] pi(isNat#) = [] pi(n__s) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p5: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p8: isNat#(n__plus(V1,V2)) -> activate#(V1) p9: activate#(n__isNat(X)) -> isNat#(X) p10: isNat#(n__s(V1)) -> isNat#(activate(V1)) p11: isNat#(n__s(V1)) -> activate#(V1) p12: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) p9: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p10: U21#(tt(),M,N) -> activate#(M) p11: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p12: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((0,1),(1,1)) x2 + (3,1) tt_A() = (1,0) activate#_A(x1) = ((0,1),(1,1)) x1 + (3,0) n__isNat_A(x1) = ((0,0),(1,1)) x1 + (2,0) isNat#_A(x1) = ((0,1),(1,1)) x1 + (3,0) n__s_A(x1) = x1 n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(1,1)) x2 + (4,2) plus#_A(x1,x2) = ((0,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) s_A(x1) = x1 activate_A(x1) = x1 U21#_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((0,1),(1,1)) x3 + (3,2) and_A(x1,x2) = ((0,0),(1,1)) x1 + x2 isNat_A(x1) = ((0,0),(1,1)) x1 + (2,0) |0|_A() = (0,0) U11_A(x1,x2) = ((1,1),(1,1)) x2 + (1,1) U21_A(x1,x2,x3) = ((1,0),(1,1)) x2 + ((1,1),(1,1)) x3 + (4,2) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(1,1)) x2 + (4,2) n__0_A() = (0,0) precedence: U11# = tt = activate# = n__isNat = isNat# = n__s = n__plus = plus# = s = activate = U21# = and = isNat = |0| = U11 = U21 = plus = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(activate) = [] pi(U21#) = [] pi(and) = [] pi(isNat) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p9: U21#(tt(),M,N) -> activate#(M) p10: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p11: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p5: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: activate#(n__isNat(X)) -> isNat#(X) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__s(V1)) -> activate#(V1) p11: U21#(tt(),M,N) -> activate#(M) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((1,1),(0,0)) x2 + (9,5) tt_A() = (7,0) activate#_A(x1) = ((1,0),(0,0)) x1 + (8,5) n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,1)) x2 + (6,1) plus#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (10,5) |0|_A() = (1,1) isNat_A(x1) = ((1,0),(1,0)) x1 + (8,4) s_A(x1) = ((1,0),(0,0)) x1 U21#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,1),(0,0)) x3 + (10,5) and_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (1,2) n__isNat_A(x1) = ((1,0),(1,0)) x1 + (8,4) activate_A(x1) = x1 isNat#_A(x1) = ((1,0),(0,0)) x1 + (9,5) n__s_A(x1) = ((1,0),(0,0)) x1 U11_A(x1,x2) = x2 U21_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,1),(0,1)) x3 + (6,1) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(1,1)) x2 + (6,1) n__0_A() = (1,1) precedence: U11# = tt = activate# = n__plus = plus# = |0| = isNat = s = U21# = and = n__isNat = activate = isNat# = n__s = U11 = U21 = plus = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(|0|) = [] pi(isNat) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(n__isNat) = [] pi(activate) = [] pi(isNat#) = [] pi(n__s) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p5: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: activate#(n__isNat(X)) -> isNat#(X) p9: isNat#(n__s(V1)) -> isNat#(activate(V1)) p10: isNat#(n__s(V1)) -> activate#(V1) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__plus(V1,V2)) -> activate#(V1) p8: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p9: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p10: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((0,1),(0,1)) x2 + (5,6) tt_A() = (4,0) activate#_A(x1) = ((0,1),(0,1)) x1 + (5,6) n__isNat_A(x1) = ((0,1),(0,1)) x1 + (7,5) isNat#_A(x1) = ((0,1),(0,1)) x1 + (3,3) n__s_A(x1) = ((0,1),(0,1)) x1 + (3,3) n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,1)) x2 + (7,5) plus#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (1,1) s_A(x1) = ((0,1),(0,1)) x1 + (3,3) activate_A(x1) = x1 U21#_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (2,1) and_A(x1,x2) = ((0,1),(0,1)) x1 + x2 isNat_A(x1) = ((0,1),(0,1)) x1 + (7,5) |0|_A() = (1,5) U11_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (1,6) U21_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((1,1),(1,1)) x3 + (9,8) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,1)) x2 + (7,5) n__0_A() = (1,5) precedence: U11# = tt = activate# = n__isNat = isNat# = n__s = n__plus = plus# = s = activate = U21# = and = isNat = |0| = U11 = U21 = plus = n__0 partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__isNat) = [] pi(isNat#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(activate) = [] pi(U21#) = [] pi(and) = [] pi(isNat) = [] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> isNat#(M) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p8: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p9: plus#(N,|0|()) -> U11#(isNat(N),N) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p5: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p6: plus#(N,s(M)) -> isNat#(M) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) p8: isNat#(n__s(V1)) -> activate#(V1) p9: activate#(n__isNat(X)) -> isNat#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((1,0),(0,0)) x1 + ((0,1),(1,0)) x2 + (2,2) tt_A() = (26,1) activate#_A(x1) = ((0,1),(1,0)) x1 + (27,2) n__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 + (26,0) plus#_A(x1,x2) = ((1,1),(1,0)) x1 + ((0,1),(1,0)) x2 + (26,0) |0|_A() = (26,0) isNat_A(x1) = ((1,0),(1,1)) x1 + (23,2) s_A(x1) = x1 + (29,15) U21#_A(x1,x2,x3) = ((0,1),(1,0)) x2 + ((1,1),(1,0)) x3 + (41,16) and_A(x1,x2) = x2 + (23,1) n__isNat_A(x1) = ((1,0),(1,1)) x1 + (19,1) activate_A(x1) = x1 + (6,1) isNat#_A(x1) = ((0,1),(1,0)) x1 + (12,10) n__s_A(x1) = x1 + (28,15) U11_A(x1,x2) = x2 + (27,1) U21_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,0),(1,1)) x3 + (70,29) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 + (27,0) n__0_A() = (21,0) precedence: U11# = activate# = plus# = U21# = isNat# = plus > isNat = and > tt = s = activate = n__s = U21 > U11 > n__plus = |0| = n__0 > n__isNat partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(|0|) = [] pi(isNat) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(n__isNat) = [] pi(activate) = [] pi(isNat#) = [] pi(n__s) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p5: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p6: isNat#(n__s(V1)) -> isNat#(activate(V1)) p7: isNat#(n__s(V1)) -> activate#(V1) p8: activate#(n__isNat(X)) -> isNat#(X) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: isNat#(n__s(V1)) -> activate#(V1) p4: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p5: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p6: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p7: plus#(N,|0|()) -> U11#(isNat(N),N) p8: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((0,1),(0,0)) x2 + (4,12) tt_A() = (59,1) activate#_A(x1) = ((0,1),(0,0)) x1 + (3,12) n__isNat_A(x1) = ((1,1),(1,1)) x1 + (7,13) isNat#_A(x1) = ((1,1),(0,0)) x1 + (15,12) n__s_A(x1) = ((0,1),(1,0)) x1 + (3,12) n__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (41,44) plus#_A(x1,x2) = ((0,1),(0,0)) x1 + (5,12) s_A(x1) = ((0,1),(1,0)) x1 + (6,12) U21#_A(x1,x2,x3) = ((0,1),(0,0)) x3 + (5,12) and_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,0) isNat_A(x1) = ((1,1),(1,1)) x1 + (7,13) activate_A(x1) = x1 + (4,0) |0|_A() = (60,1) U11_A(x1,x2) = ((1,1),(0,1)) x2 + (5,2) U21_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (59,62) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (42,44) n__0_A() = (60,1) precedence: isNat# = |0| = U11 = n__0 > U21 = plus > n__isNat = and = isNat > U11# = tt = activate# = n__s = n__plus = plus# = s = U21# = activate partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__isNat) = [1] pi(isNat#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(isNat) = [1] pi(activate) = [1] pi(|0|) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__isNat(X)) -> isNat#(X) p3: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p4: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p5: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) p6: plus#(N,|0|()) -> U11#(isNat(N),N) p7: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6} {p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,|0|()) -> U11#(isNat(N),N) p4: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p5: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: U11#_A(x1,x2) = ((1,0),(0,0)) x1 + ((0,1),(0,0)) x2 + (1,2) tt_A() = (3,0) activate#_A(x1) = ((0,1),(0,0)) x1 + (4,2) n__plus_A(x1,x2) = x1 + ((0,0),(0,1)) x2 + (1,1) plus#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (5,2) |0|_A() = (2,0) isNat_A(x1) = (3,0) s_A(x1) = ((0,0),(0,1)) x1 + (2,2) U21#_A(x1,x2,x3) = ((0,1),(0,0)) x2 + ((0,1),(0,0)) x3 + (6,2) and_A(x1,x2) = ((1,0),(0,0)) x1 + ((1,1),(0,1)) x2 n__isNat_A(x1) = (0,0) activate_A(x1) = ((1,1),(0,1)) x1 + (3,0) U11_A(x1,x2) = ((1,1),(0,1)) x2 + (4,1) U21_A(x1,x2,x3) = ((0,0),(0,1)) x2 + ((0,0),(0,1)) x3 + (4,3) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (5,1) n__0_A() = (2,0) n__s_A(x1) = ((0,0),(0,1)) x1 + (1,2) precedence: U11# = tt = activate# = n__plus = plus# = |0| = isNat = s = U21# = and = n__isNat = activate = U11 = U21 = plus = n__0 = n__s partial status: pi(U11#) = [] pi(tt) = [] pi(activate#) = [] pi(n__plus) = [] pi(plus#) = [] pi(|0|) = [] pi(isNat) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(n__isNat) = [] pi(activate) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(n__0) = [] pi(n__s) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),N) -> activate#(N) p2: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p3: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p4: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(N,s(M)) -> U21#(and(isNat(M),n__isNat(N)),M,N) p2: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = ((0,1),(0,1)) x2 + (22,1) s_A(x1) = ((0,1),(0,1)) x1 + (24,6) U21#_A(x1,x2,x3) = ((0,1),(0,1)) x2 + (23,6) and_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,1)) x2 + (1,0) isNat_A(x1) = ((0,1),(0,1)) x1 + (26,8) n__isNat_A(x1) = ((0,0),(0,1)) x1 + (1,8) tt_A() = (21,20) activate_A(x1) = ((1,1),(0,1)) x1 + (20,0) U11_A(x1,x2) = ((1,1),(0,1)) x2 + (21,1) U21_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((1,1),(0,1)) x3 + (24,6) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (19,0) |0|_A() = (2,12) n__0_A() = (1,12) n__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,0),(0,1)) x2 + (19,0) n__s_A(x1) = ((0,0),(0,1)) x1 + (1,6) precedence: and = isNat = tt = activate = U11 = plus > s = U21 = |0| = n__0 > n__isNat = n__s > n__plus > plus# > U21# partial status: pi(plus#) = [] pi(s) = [] pi(U21#) = [] pi(and) = [] pi(isNat) = [] pi(n__isNat) = [] pi(tt) = [] pi(activate) = [] pi(U11) = [] pi(U21) = [] pi(plus) = [] pi(|0|) = [] pi(n__0) = [] pi(n__plus) = [] pi(n__s) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U21#(tt(),M,N) -> plus#(activate(N),activate(M)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(n__s(V1)) -> isNat#(activate(V1)) and R consists of: r1: U11(tt(),N) -> activate(N) r2: U21(tt(),M,N) -> s(plus(activate(N),activate(M))) r3: and(tt(),X) -> activate(X) r4: isNat(n__0()) -> tt() r5: isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) r6: isNat(n__s(V1)) -> isNat(activate(V1)) r7: plus(N,|0|()) -> U11(isNat(N),N) r8: plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) r9: |0|() -> n__0() r10: plus(X1,X2) -> n__plus(X1,X2) r11: isNat(X) -> n__isNat(X) r12: s(X) -> n__s(X) r13: activate(n__0()) -> |0|() r14: activate(n__plus(X1,X2)) -> plus(X1,X2) r15: activate(n__isNat(X)) -> isNat(X) r16: activate(n__s(X)) -> s(X) r17: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: isNat#_A(x1) = ((0,1),(0,0)) x1 + (1,2) n__s_A(x1) = ((0,0),(0,1)) x1 + (0,1) activate_A(x1) = ((1,1),(0,1)) x1 + (5,0) U11_A(x1,x2) = ((1,1),(0,1)) x2 + (7,4) tt_A() = (2,0) U21_A(x1,x2,x3) = ((0,0),(0,1)) x2 + ((0,0),(0,1)) x3 + (4,2) s_A(x1) = ((0,0),(0,1)) x1 + (3,1) plus_A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (2,1) and_A(x1,x2) = ((1,1),(0,1)) x2 + (5,0) isNat_A(x1) = ((0,1),(0,0)) x1 + (7,3) n__0_A() = (1,3) n__plus_A(x1,x2) = x1 + x2 + (1,1) n__isNat_A(x1) = ((0,1),(0,0)) x1 + (0,3) |0|_A() = (6,3) precedence: activate = U11 = tt = plus = and = isNat = n__0 = n__plus = n__isNat > isNat# > n__s = U21 = s = |0| partial status: pi(isNat#) = [] pi(n__s) = [] pi(activate) = [] pi(U11) = [] pi(tt) = [] pi(U21) = [] pi(s) = [] pi(plus) = [] pi(and) = [] pi(isNat) = [] pi(n__0) = [] pi(n__plus) = [] pi(n__isNat) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.