YES We show the termination of the TRS R: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) a__U12(tt()) -> tt() a__U21(tt()) -> tt() a__U31(tt(),N) -> mark(N) a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) a__isNat(|0|()) -> tt() a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) a__isNat(s(V1)) -> a__U21(a__isNat(V1)) a__plus(N,|0|()) -> a__U31(a__isNat(N),N) a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) mark(U11(X1,X2)) -> a__U11(mark(X1),X2) mark(U12(X)) -> a__U12(mark(X)) mark(isNat(X)) -> a__isNat(X) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1,X2)) -> a__U31(mark(X1),X2) mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) mark(tt()) -> tt() mark(s(X)) -> s(mark(X)) mark(|0|()) -> |0|() a__U11(X1,X2) -> U11(X1,X2) a__U12(X) -> U12(X) a__isNat(X) -> isNat(X) a__U21(X) -> U21(X) a__U31(X1,X2) -> U31(X1,X2) a__U41(X1,X2,X3) -> U41(X1,X2,X3) a__U42(X1,X2,X3) -> U42(X1,X2,X3) a__plus(X1,X2) -> plus(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V2) -> a__U12#(a__isNat(V2)) p2: a__U11#(tt(),V2) -> a__isNat#(V2) p3: a__U31#(tt(),N) -> mark#(N) p4: a__U41#(tt(),M,N) -> a__U42#(a__isNat(N),M,N) p5: a__U41#(tt(),M,N) -> a__isNat#(N) p6: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p7: a__U42#(tt(),M,N) -> mark#(N) p8: a__U42#(tt(),M,N) -> mark#(M) p9: a__isNat#(plus(V1,V2)) -> a__U11#(a__isNat(V1),V2) p10: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p11: a__isNat#(s(V1)) -> a__U21#(a__isNat(V1)) p12: a__isNat#(s(V1)) -> a__isNat#(V1) p13: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) p14: a__plus#(N,|0|()) -> a__isNat#(N) p15: a__plus#(N,s(M)) -> a__U41#(a__isNat(M),M,N) p16: a__plus#(N,s(M)) -> a__isNat#(M) p17: mark#(U11(X1,X2)) -> a__U11#(mark(X1),X2) p18: mark#(U11(X1,X2)) -> mark#(X1) p19: mark#(U12(X)) -> a__U12#(mark(X)) p20: mark#(U12(X)) -> mark#(X) p21: mark#(isNat(X)) -> a__isNat#(X) p22: mark#(U21(X)) -> a__U21#(mark(X)) p23: mark#(U21(X)) -> mark#(X) p24: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p25: mark#(U31(X1,X2)) -> mark#(X1) p26: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p27: mark#(U41(X1,X2,X3)) -> mark#(X1) p28: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p29: mark#(U42(X1,X2,X3)) -> mark#(X1) p30: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p31: mark#(plus(X1,X2)) -> mark#(X1) p32: mark#(plus(X1,X2)) -> mark#(X2) p33: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p3, p4, p6, p7, p8, p13, p15, p18, p20, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33} {p2, p9, p10, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U42#(tt(),M,N) -> mark#(M) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(plus(X1,X2)) -> mark#(X1) p5: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p6: a__plus#(N,s(M)) -> a__U41#(a__isNat(M),M,N) p7: a__U41#(tt(),M,N) -> a__U42#(a__isNat(N),M,N) p8: a__U42#(tt(),M,N) -> mark#(N) p9: mark#(U42(X1,X2,X3)) -> mark#(X1) p10: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p11: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p12: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) p13: a__U31#(tt(),N) -> mark#(N) p14: mark#(U41(X1,X2,X3)) -> mark#(X1) p15: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p16: mark#(U31(X1,X2)) -> mark#(X1) p17: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p18: mark#(U21(X)) -> mark#(X) p19: mark#(U12(X)) -> mark#(X) p20: mark#(U11(X1,X2)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U42#_A(x1,x2,x3) = ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (5,1) tt_A() = (1,12) mark#_A(x1) = ((0,1),(0,1)) x1 + (3,1) s_A(x1) = ((0,0),(0,1)) x1 + (25,23) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (17,11) a__plus#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (4,1) mark_A(x1) = x1 + (7,0) a__U41#_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (13,0) a__isNat_A(x1) = (26,12) U42_A(x1,x2,x3) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (6,22) |0|_A() = (12,10) a__U31#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,1)) x2 + (1,1) U41_A(x1,x2,x3) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + ((1,1),(0,1)) x3 + (13,22) U31_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (4,9) U21_A(x1) = ((0,0),(0,1)) x1 + (23,0) U12_A(x1) = ((0,0),(0,1)) x1 + (19,0) U11_A(x1,x2) = ((0,0),(0,1)) x1 + (20,0) a__U11_A(x1,x2) = ((0,0),(0,1)) x1 + (26,0) a__U12_A(x1) = ((0,0),(0,1)) x1 + (26,0) a__U21_A(x1) = ((0,0),(0,1)) x1 + (24,0) a__U31_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (11,9) a__U41_A(x1,x2,x3) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + ((1,1),(0,1)) x3 + (13,22) a__U42_A(x1,x2,x3) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (13,22) a__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (17,11) isNat_A(x1) = (20,12) precedence: mark = a__isNat = |0| = a__U11 = a__U21 = a__U31 = a__plus > plus > U31 > tt = mark# = a__plus# = a__U31# = U12 = a__U12 > U21 > a__U42# = s = a__U41# = U42 = U41 = U11 = a__U41 = a__U42 = isNat partial status: pi(a__U42#) = [] pi(tt) = [] pi(mark#) = [] pi(s) = [] pi(plus) = [1] pi(a__plus#) = [] pi(mark) = [] pi(a__U41#) = [] pi(a__isNat) = [] pi(U42) = [] pi(|0|) = [] pi(a__U31#) = [] pi(U41) = [] pi(U31) = [] pi(U21) = [] pi(U12) = [] pi(U11) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__plus) = [] pi(isNat) = [] The next rules are strictly ordered: p15 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U42#(tt(),M,N) -> mark#(M) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(plus(X1,X2)) -> mark#(X1) p5: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p6: a__plus#(N,s(M)) -> a__U41#(a__isNat(M),M,N) p7: a__U41#(tt(),M,N) -> a__U42#(a__isNat(N),M,N) p8: a__U42#(tt(),M,N) -> mark#(N) p9: mark#(U42(X1,X2,X3)) -> mark#(X1) p10: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p11: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p12: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) p13: a__U31#(tt(),N) -> mark#(N) p14: mark#(U41(X1,X2,X3)) -> mark#(X1) p15: mark#(U31(X1,X2)) -> mark#(X1) p16: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p17: mark#(U21(X)) -> mark#(X) p18: mark#(U12(X)) -> mark#(X) p19: mark#(U11(X1,X2)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U42#(tt(),M,N) -> mark#(M) p2: mark#(U11(X1,X2)) -> mark#(X1) p3: mark#(U12(X)) -> mark#(X) p4: mark#(U21(X)) -> mark#(X) p5: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p6: a__U31#(tt(),N) -> mark#(N) p7: mark#(U31(X1,X2)) -> mark#(X1) p8: mark#(U41(X1,X2,X3)) -> mark#(X1) p9: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p10: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p11: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) p12: a__plus#(N,s(M)) -> a__U41#(a__isNat(M),M,N) p13: a__U41#(tt(),M,N) -> a__U42#(a__isNat(N),M,N) p14: a__U42#(tt(),M,N) -> mark#(N) p15: mark#(U42(X1,X2,X3)) -> mark#(X1) p16: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p17: mark#(plus(X1,X2)) -> mark#(X1) p18: mark#(plus(X1,X2)) -> mark#(X2) p19: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U42#_A(x1,x2,x3) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + ((0,1),(0,0)) x3 + (3,11) tt_A() = (14,10) mark#_A(x1) = ((0,1),(0,0)) x1 + (1,11) U11_A(x1,x2) = ((0,1),(0,1)) x1 + (6,0) U12_A(x1) = ((0,0),(0,1)) x1 + (15,0) U21_A(x1) = ((0,1),(0,1)) x1 + (4,0) U31_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (28,28) a__U31#_A(x1,x2) = ((0,1),(0,0)) x2 + (29,11) mark_A(x1) = x1 U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,1),(1,1)) x2 + x3 + (25,11) U42_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,1),(1,1)) x2 + x3 + (24,11) a__plus#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (13,11) |0|_A() = (15,11) a__isNat_A(x1) = ((0,1),(0,0)) x1 + (5,10) s_A(x1) = x1 + (6,9) a__U41#_A(x1,x2,x3) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + ((0,1),(0,0)) x3 + (4,11) plus_A(x1,x2) = x1 + ((0,1),(1,1)) x2 + (17,12) a__U11_A(x1,x2) = ((0,1),(0,1)) x1 + (6,0) a__U12_A(x1) = ((0,0),(0,1)) x1 + (15,0) a__U21_A(x1) = ((0,1),(0,1)) x1 + (4,0) a__U31_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (28,28) a__U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,1),(1,1)) x2 + x3 + (25,11) a__U42_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,1),(1,1)) x2 + x3 + (24,11) a__plus_A(x1,x2) = x1 + ((0,1),(1,1)) x2 + (17,12) isNat_A(x1) = ((0,1),(0,0)) x1 + (5,10) precedence: a__isNat = isNat > U21 = a__U21 > U11 = a__U11 > U12 = U31 = mark = U41 = a__U12 = a__U31 = a__U41 = a__U42 = a__plus > tt > plus > s > a__U42# = mark# = a__U31# = a__plus# = a__U41# > |0| > U42 partial status: pi(a__U42#) = [] pi(tt) = [] pi(mark#) = [] pi(U11) = [] pi(U12) = [] pi(U21) = [] pi(U31) = [] pi(a__U31#) = [] pi(mark) = [1] pi(U41) = [3] pi(U42) = [] pi(a__plus#) = [] pi(|0|) = [] pi(a__isNat) = [] pi(s) = [1] pi(a__U41#) = [] pi(plus) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U21) = [] pi(a__U31) = [2] pi(a__U41) = [3] pi(a__U42) = [] pi(a__plus) = [1] pi(isNat) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U12(X)) -> mark#(X) p3: mark#(U21(X)) -> mark#(X) p4: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p5: a__U31#(tt(),N) -> mark#(N) p6: mark#(U31(X1,X2)) -> mark#(X1) p7: mark#(U41(X1,X2,X3)) -> mark#(X1) p8: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p9: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p10: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) p11: a__plus#(N,s(M)) -> a__U41#(a__isNat(M),M,N) p12: a__U41#(tt(),M,N) -> a__U42#(a__isNat(N),M,N) p13: a__U42#(tt(),M,N) -> mark#(N) p14: mark#(U42(X1,X2,X3)) -> mark#(X1) p15: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p16: mark#(plus(X1,X2)) -> mark#(X1) p17: mark#(plus(X1,X2)) -> mark#(X2) p18: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(plus(X1,X2)) -> mark#(X1) p5: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p6: a__plus#(N,s(M)) -> a__U41#(a__isNat(M),M,N) p7: a__U41#(tt(),M,N) -> a__U42#(a__isNat(N),M,N) p8: a__U42#(tt(),M,N) -> mark#(N) p9: mark#(U42(X1,X2,X3)) -> mark#(X1) p10: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p11: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p12: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) p13: a__U31#(tt(),N) -> mark#(N) p14: mark#(U41(X1,X2,X3)) -> mark#(X1) p15: mark#(U31(X1,X2)) -> mark#(X1) p16: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p17: mark#(U21(X)) -> mark#(X) p18: mark#(U12(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(1,0)) x1 + (6,7) U11_A(x1,x2) = x1 s_A(x1) = x1 + (12,12) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (10,10) a__plus#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (12,1) mark_A(x1) = ((0,1),(1,0)) x1 a__U41#_A(x1,x2,x3) = ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (36,12) a__isNat_A(x1) = (11,11) tt_A() = (11,11) a__U42#_A(x1,x2,x3) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,12) U42_A(x1,x2,x3) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (5,5) |0|_A() = (10,10) a__U31#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (8,7) U41_A(x1,x2,x3) = x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (17,17) U31_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (7,7) U21_A(x1) = x1 U12_A(x1) = x1 a__U11_A(x1,x2) = x1 a__U12_A(x1) = x1 a__U21_A(x1) = x1 a__U31_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (7,7) a__U41_A(x1,x2,x3) = x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (17,17) a__U42_A(x1,x2,x3) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (5,5) a__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (10,10) isNat_A(x1) = (11,11) precedence: mark# > a__plus# = mark = a__U41# = a__isNat = tt = a__U11 = a__U12 = a__U21 = a__U31 = a__U41 = a__U42 = a__plus > U11 = a__U42# = |0| > a__U31# > plus = U41 > U31 > U12 > s > U42 = U21 > isNat partial status: pi(mark#) = [] pi(U11) = [] pi(s) = [1] pi(plus) = [] pi(a__plus#) = [2] pi(mark) = [] pi(a__U41#) = [2] pi(a__isNat) = [] pi(tt) = [] pi(a__U42#) = [] pi(U42) = [] pi(|0|) = [] pi(a__U31#) = [] pi(U41) = [] pi(U31) = [] pi(U21) = [] pi(U12) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__plus) = [] pi(isNat) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(plus(X1,X2)) -> mark#(X1) p5: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p6: a__U41#(tt(),M,N) -> a__U42#(a__isNat(N),M,N) p7: a__U42#(tt(),M,N) -> mark#(N) p8: mark#(U42(X1,X2,X3)) -> mark#(X1) p9: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p10: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p11: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) p12: a__U31#(tt(),N) -> mark#(N) p13: mark#(U41(X1,X2,X3)) -> mark#(X1) p14: mark#(U31(X1,X2)) -> mark#(X1) p15: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p16: mark#(U21(X)) -> mark#(X) p17: mark#(U12(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U12(X)) -> mark#(X) p3: mark#(U21(X)) -> mark#(X) p4: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p5: a__U31#(tt(),N) -> mark#(N) p6: mark#(U31(X1,X2)) -> mark#(X1) p7: mark#(U41(X1,X2,X3)) -> mark#(X1) p8: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p9: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p10: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) p11: a__U42#(tt(),M,N) -> mark#(N) p12: mark#(U42(X1,X2,X3)) -> mark#(X1) p13: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p14: mark#(plus(X1,X2)) -> mark#(X1) p15: mark#(plus(X1,X2)) -> mark#(X2) p16: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (2,5) U11_A(x1,x2) = x1 U12_A(x1) = x1 U21_A(x1) = x1 U31_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (7,7) a__U31#_A(x1,x2) = ((1,1),(1,0)) x2 + (3,5) mark_A(x1) = ((0,1),(1,0)) x1 tt_A() = (0,0) U41_A(x1,x2,x3) = x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (5,5) U42_A(x1,x2,x3) = x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (5,5) a__U42#_A(x1,x2,x3) = ((0,1),(1,0)) x2 + ((1,1),(1,1)) x3 + (6,6) a__plus#_A(x1,x2) = ((1,1),(1,0)) x1 + (4,5) |0|_A() = (1,1) a__isNat_A(x1) = (0,0) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (5,5) s_A(x1) = x1 a__U11_A(x1,x2) = x1 a__U12_A(x1) = x1 a__U21_A(x1) = x1 a__U31_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (7,7) a__U41_A(x1,x2,x3) = x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (5,5) a__U42_A(x1,x2,x3) = x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (5,5) a__plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (5,5) isNat_A(x1) = (0,0) precedence: mark# = a__U31# > a__U42# > mark = |0| > a__plus# > plus = a__plus > U11 = U12 = U31 = tt = U41 = U42 = a__isNat = a__U11 = a__U12 = a__U21 = a__U31 = a__U41 = a__U42 = isNat > U21 = s partial status: pi(mark#) = [] pi(U11) = [] pi(U12) = [] pi(U21) = [] pi(U31) = [1] pi(a__U31#) = [] pi(mark) = [] pi(tt) = [] pi(U41) = [1] pi(U42) = [] pi(a__U42#) = [] pi(a__plus#) = [] pi(|0|) = [] pi(a__isNat) = [] pi(plus) = [] pi(s) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U21) = [] pi(a__U31) = [1] pi(a__U41) = [1] pi(a__U42) = [1] pi(a__plus) = [] pi(isNat) = [] The next rules are strictly ordered: p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U12(X)) -> mark#(X) p3: mark#(U21(X)) -> mark#(X) p4: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p5: a__U31#(tt(),N) -> mark#(N) p6: mark#(U31(X1,X2)) -> mark#(X1) p7: mark#(U41(X1,X2,X3)) -> mark#(X1) p8: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p9: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p10: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) p11: a__U42#(tt(),M,N) -> mark#(N) p12: mark#(U42(X1,X2,X3)) -> mark#(X1) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> mark#(X2) p15: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(plus(X1,X2)) -> mark#(X1) p5: mark#(U42(X1,X2,X3)) -> mark#(X1) p6: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p7: a__U42#(tt(),M,N) -> mark#(N) p8: mark#(U41(X1,X2,X3)) -> mark#(X1) p9: mark#(U31(X1,X2)) -> mark#(X1) p10: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p11: a__U31#(tt(),N) -> mark#(N) p12: mark#(U21(X)) -> mark#(X) p13: mark#(U12(X)) -> mark#(X) p14: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p15: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (10,4) U11_A(x1,x2) = x1 + (0,5) s_A(x1) = ((1,0),(0,0)) x1 + (1,3) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(0,0)) x2 + (12,5) U42_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + ((1,1),(0,0)) x3 + (2,4) a__U42#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + ((1,1),(1,1)) x3 + (10,5) mark_A(x1) = x1 tt_A() = (11,9) U41_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + ((1,1),(0,0)) x3 + (2,5) U31_A(x1,x2) = ((1,1),(0,0)) x1 + x2 + (1,5) a__U31#_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,0),(1,0)) x2 + (2,0) U21_A(x1) = ((1,0),(0,0)) x1 + (0,9) U12_A(x1) = ((1,0),(0,0)) x1 + (0,9) a__plus#_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,0),(1,0)) x2 + (9,0) |0|_A() = (18,5) a__isNat_A(x1) = ((0,0),(0,1)) x1 + (11,6) a__U11_A(x1,x2) = x1 + (0,5) a__U12_A(x1) = ((1,0),(0,0)) x1 + (0,9) a__U21_A(x1) = ((1,0),(0,0)) x1 + (0,9) a__U31_A(x1,x2) = ((1,1),(0,0)) x1 + x2 + (1,5) a__U41_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + ((1,1),(0,0)) x3 + (2,5) a__U42_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + ((1,1),(0,0)) x3 + (2,4) a__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,0),(0,0)) x2 + (12,5) isNat_A(x1) = ((0,0),(0,1)) x1 + (11,6) precedence: mark# = a__U42# > a__plus# > a__U31# > U11 = s = plus = U42 = mark = tt = U41 = U31 = U21 = U12 = |0| = a__isNat = a__U11 = a__U12 = a__U21 = a__U31 = a__U41 = a__U42 = a__plus = isNat partial status: pi(mark#) = [] pi(U11) = [] pi(s) = [] pi(plus) = [] pi(U42) = [] pi(a__U42#) = [3] pi(mark) = [] pi(tt) = [] pi(U41) = [] pi(U31) = [] pi(a__U31#) = [] pi(U21) = [] pi(U12) = [] pi(a__plus#) = [1] pi(|0|) = [] pi(a__isNat) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__plus) = [] pi(isNat) = [] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(plus(X1,X2)) -> mark#(X1) p5: mark#(U42(X1,X2,X3)) -> mark#(X1) p6: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p7: a__U42#(tt(),M,N) -> mark#(N) p8: mark#(U41(X1,X2,X3)) -> mark#(X1) p9: mark#(U31(X1,X2)) -> mark#(X1) p10: a__U31#(tt(),N) -> mark#(N) p11: mark#(U21(X)) -> mark#(X) p12: mark#(U12(X)) -> mark#(X) p13: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p14: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U12(X)) -> mark#(X) p3: mark#(U21(X)) -> mark#(X) p4: mark#(U31(X1,X2)) -> mark#(X1) p5: mark#(U41(X1,X2,X3)) -> mark#(X1) p6: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p7: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p8: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) p9: a__U31#(tt(),N) -> mark#(N) p10: mark#(U42(X1,X2,X3)) -> mark#(X1) p11: mark#(plus(X1,X2)) -> mark#(X1) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(s(X)) -> mark#(X) p14: a__U42#(tt(),M,N) -> mark#(N) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(1,0)) x1 + (5,7) U11_A(x1,x2) = ((1,0),(1,0)) x1 + (0,2) U12_A(x1) = ((1,0),(0,0)) x1 + (0,6) U21_A(x1) = ((1,0),(0,0)) x1 + (0,5) U31_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (6,2) U41_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + x3 + (4,2) U42_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + x3 + (4,2) a__U42#_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(1,0)) x3 + (5,7) mark_A(x1) = ((1,0),(1,1)) x1 + (0,2) tt_A() = (8,6) a__plus#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (2,7) |0|_A() = (7,1) a__U31#_A(x1,x2) = ((1,0),(1,0)) x2 + (6,7) a__isNat_A(x1) = ((0,0),(0,1)) x1 + (8,12) plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(0,0)) x2 + (9,1) s_A(x1) = ((1,0),(0,0)) x1 + (3,6) a__U11_A(x1,x2) = ((1,0),(1,0)) x1 + (0,4) a__U12_A(x1) = ((1,0),(0,0)) x1 + (0,6) a__U21_A(x1) = ((1,0),(0,0)) x1 + (0,7) a__U31_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (6,3) a__U41_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + x3 + (4,7) a__U42_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + x3 + (4,7) a__plus_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (9,4) isNat_A(x1) = ((0,0),(0,1)) x1 + (8,2) precedence: mark# = U31 = a__U42# = mark = tt = a__isNat = a__U11 = a__U12 = a__U21 = a__U31 = a__plus > U21 = U42 = a__U41 = a__U42 > U11 = U12 = U41 = |0| = plus = s = isNat > a__plus# = a__U31# partial status: pi(mark#) = [] pi(U11) = [] pi(U12) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U42) = [] pi(a__U42#) = [] pi(mark) = [] pi(tt) = [] pi(a__plus#) = [] pi(|0|) = [] pi(a__U31#) = [] pi(a__isNat) = [] pi(plus) = [] pi(s) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__plus) = [] pi(isNat) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U12(X)) -> mark#(X) p3: mark#(U21(X)) -> mark#(X) p4: mark#(U31(X1,X2)) -> mark#(X1) p5: mark#(U41(X1,X2,X3)) -> mark#(X1) p6: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p7: a__U42#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p8: a__plus#(N,|0|()) -> a__U31#(a__isNat(N),N) p9: mark#(U42(X1,X2,X3)) -> mark#(X1) p10: mark#(plus(X1,X2)) -> mark#(X1) p11: mark#(plus(X1,X2)) -> mark#(X2) p12: mark#(s(X)) -> mark#(X) p13: a__U42#(tt(),M,N) -> mark#(N) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(plus(X1,X2)) -> mark#(X1) p5: mark#(U42(X1,X2,X3)) -> mark#(X1) p6: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p7: a__U42#(tt(),M,N) -> mark#(N) p8: mark#(U41(X1,X2,X3)) -> mark#(X1) p9: mark#(U31(X1,X2)) -> mark#(X1) p10: mark#(U21(X)) -> mark#(X) p11: mark#(U12(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (0,8) U11_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,1),(0,0)) x2 s_A(x1) = ((0,0),(0,1)) x1 + (5,6) plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (0,12) U42_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (5,7) a__U42#_A(x1,x2,x3) = ((0,1),(0,0)) x3 + (6,8) mark_A(x1) = ((1,1),(0,1)) x1 + (8,0) tt_A() = (8,11) U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (1,7) U31_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (8,8) U21_A(x1) = ((0,1),(0,1)) x1 U12_A(x1) = ((0,0),(0,1)) x1 a__U11_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,1),(0,0)) x2 + (8,0) a__U12_A(x1) = ((0,0),(0,1)) x1 + (8,0) a__isNat_A(x1) = ((1,0),(0,0)) x1 + (8,11) a__U21_A(x1) = ((0,1),(0,1)) x1 + (1,0) a__U31_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(0,1)) x2 + (24,8) a__U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (16,7) a__U42_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,1),(0,1)) x2 + ((0,1),(0,1)) x3 + (6,7) a__plus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (11,12) |0|_A() = (1,14) isNat_A(x1) = ((1,0),(0,0)) x1 + (1,11) precedence: |0| > plus = mark = U41 = U31 = a__U11 = a__isNat = a__U21 = a__U31 = a__U41 = a__U42 = a__plus > s > U12 = a__U12 > tt > isNat > mark# = U11 = U42 = a__U42# = U21 partial status: pi(mark#) = [] pi(U11) = [] pi(s) = [] pi(plus) = [] pi(U42) = [] pi(a__U42#) = [] pi(mark) = [] pi(tt) = [] pi(U41) = [] pi(U31) = [] pi(U21) = [] pi(U12) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__isNat) = [] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__plus) = [] pi(|0|) = [] pi(isNat) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(plus(X1,X2)) -> mark#(X1) p5: mark#(U42(X1,X2,X3)) -> mark#(X1) p6: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p7: a__U42#(tt(),M,N) -> mark#(N) p8: mark#(U41(X1,X2,X3)) -> mark#(X1) p9: mark#(U21(X)) -> mark#(X) p10: mark#(U12(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U12(X)) -> mark#(X) p3: mark#(U21(X)) -> mark#(X) p4: mark#(U41(X1,X2,X3)) -> mark#(X1) p5: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p6: a__U42#(tt(),M,N) -> mark#(N) p7: mark#(U42(X1,X2,X3)) -> mark#(X1) p8: mark#(plus(X1,X2)) -> mark#(X1) p9: mark#(plus(X1,X2)) -> mark#(X2) p10: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (0,2) U11_A(x1,x2) = ((0,0),(0,1)) x1 + (9,0) U12_A(x1) = ((0,0),(0,1)) x1 + (9,0) U21_A(x1) = ((0,0),(0,1)) x1 U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + ((0,0),(0,1)) x3 + (3,1) U42_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + ((0,0),(0,1)) x3 + (1,1) a__U42#_A(x1,x2,x3) = ((0,1),(0,0)) x3 + (0,2) mark_A(x1) = x1 + (4,0) tt_A() = (0,5) plus_A(x1,x2) = x1 + ((0,0),(0,1)) x2 + (6,1) s_A(x1) = ((0,0),(0,1)) x1 + (1,5) a__U11_A(x1,x2) = ((0,0),(0,1)) x1 + (13,0) a__U12_A(x1) = ((0,0),(0,1)) x1 + (13,0) a__isNat_A(x1) = ((1,0),(0,0)) x1 + (7,5) a__U21_A(x1) = ((0,0),(0,1)) x1 a__U31_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (0,1) a__U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + ((0,0),(0,1)) x3 + (3,1) a__U42_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((0,0),(0,1)) x2 + ((0,0),(0,1)) x3 + (2,1) a__plus_A(x1,x2) = x1 + ((0,0),(0,1)) x2 + (6,1) |0|_A() = (0,0) isNat_A(x1) = ((1,0),(0,0)) x1 + (3,5) U31_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (0,1) precedence: |0| > a__U42# > mark# > a__U31 = U31 > mark = tt = a__U11 = a__U12 = a__isNat = a__U21 = a__plus = isNat > plus > U41 = a__U41 > U42 = s = a__U42 > U11 > U12 = U21 partial status: pi(mark#) = [] pi(U11) = [] pi(U12) = [] pi(U21) = [] pi(U41) = [] pi(U42) = [] pi(a__U42#) = [] pi(mark) = [1] pi(tt) = [] pi(plus) = [] pi(s) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__isNat) = [] pi(a__U21) = [] pi(a__U31) = [2] pi(a__U41) = [] pi(a__U42) = [] pi(a__plus) = [1] pi(|0|) = [] pi(isNat) = [] pi(U31) = [2] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U12(X)) -> mark#(X) p3: mark#(U21(X)) -> mark#(X) p4: mark#(U41(X1,X2,X3)) -> mark#(X1) p5: mark#(U42(X1,X2,X3)) -> a__U42#(mark(X1),X2,X3) p6: mark#(U42(X1,X2,X3)) -> mark#(X1) p7: mark#(plus(X1,X2)) -> mark#(X1) p8: mark#(plus(X1,X2)) -> mark#(X2) p9: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X2) p4: mark#(plus(X1,X2)) -> mark#(X1) p5: mark#(U42(X1,X2,X3)) -> mark#(X1) p6: mark#(U41(X1,X2,X3)) -> mark#(X1) p7: mark#(U21(X)) -> mark#(X) p8: mark#(U12(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (0,2) U11_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) s_A(x1) = ((1,1),(1,1)) x1 + (1,2) plus_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (0,2) U42_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) U21_A(x1) = ((1,0),(1,1)) x1 + (1,1) U12_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: mark# = U11 = s > plus = U41 = U21 = U12 > U42 partial status: pi(mark#) = [] pi(U11) = [] pi(s) = [] pi(plus) = [2] pi(U42) = [] pi(U41) = [3] pi(U21) = [1] pi(U12) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X1) p4: mark#(U42(X1,X2,X3)) -> mark#(X1) p5: mark#(U41(X1,X2,X3)) -> mark#(X1) p6: mark#(U21(X)) -> mark#(X) p7: mark#(U12(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U12(X)) -> mark#(X) p3: mark#(U21(X)) -> mark#(X) p4: mark#(U41(X1,X2,X3)) -> mark#(X1) p5: mark#(U42(X1,X2,X3)) -> mark#(X1) p6: mark#(plus(X1,X2)) -> mark#(X1) p7: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (2,2) U11_A(x1,x2) = ((0,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,2) U12_A(x1) = ((1,1),(1,1)) x1 + (3,2) U21_A(x1) = x1 + (1,1) U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) U42_A(x1,x2,x3) = x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) plus_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (3,1) s_A(x1) = ((0,0),(0,1)) x1 + (1,1) precedence: plus > U41 = s > U21 = U42 > mark# = U11 = U12 partial status: pi(mark#) = [] pi(U11) = [] pi(U12) = [1] pi(U21) = [1] pi(U41) = [] pi(U42) = [] pi(plus) = [] pi(s) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X)) -> mark#(X) p3: mark#(U41(X1,X2,X3)) -> mark#(X1) p4: mark#(U42(X1,X2,X3)) -> mark#(X1) p5: mark#(plus(X1,X2)) -> mark#(X1) p6: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X1) p4: mark#(U42(X1,X2,X3)) -> mark#(X1) p5: mark#(U41(X1,X2,X3)) -> mark#(X1) p6: mark#(U21(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 + (2,2) U11_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (3,1) s_A(x1) = ((1,0),(1,1)) x1 + (3,2) plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,1),(1,1)) x2 + (1,1) U42_A(x1,x2,x3) = ((1,0),(0,0)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) U41_A(x1,x2,x3) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) U21_A(x1) = ((1,0),(1,0)) x1 + (3,1) precedence: mark# = U42 > U11 = U21 > s = plus = U41 partial status: pi(mark#) = [] pi(U11) = [2] pi(s) = [1] pi(plus) = [2] pi(U42) = [] pi(U41) = [] pi(U21) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(plus(X1,X2)) -> mark#(X1) p4: mark#(U41(X1,X2,X3)) -> mark#(X1) p5: mark#(U21(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X)) -> mark#(X) p3: mark#(U41(X1,X2,X3)) -> mark#(X1) p4: mark#(plus(X1,X2)) -> mark#(X1) p5: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,1)) x1 + (2,2) U11_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) U21_A(x1) = ((1,1),(1,1)) x1 + (3,2) U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) plus_A(x1,x2) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + (3,1) s_A(x1) = ((0,1),(0,1)) x1 + (3,2) precedence: s > U41 = plus > mark# = U11 > U21 partial status: pi(mark#) = [] pi(U11) = [] pi(U21) = [] pi(U41) = [2] pi(plus) = [] pi(s) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X)) -> mark#(X) p3: mark#(U41(X1,X2,X3)) -> mark#(X1) p4: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(U41(X1,X2,X3)) -> mark#(X1) p4: mark#(U21(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,0),(0,0)) x1 + (0,1) U11_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (1,1) s_A(x1) = ((1,0),(0,0)) x1 + (1,1) U41_A(x1,x2,x3) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (0,1) U21_A(x1) = ((1,0),(1,0)) x1 + (1,1) precedence: s > mark# = U41 = U21 > U11 partial status: pi(mark#) = [] pi(U11) = [] pi(s) = [] pi(U41) = [2] pi(U21) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U41(X1,X2,X3)) -> mark#(X1) p3: mark#(U21(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U21(X)) -> mark#(X) p3: mark#(U41(X1,X2,X3)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,1)) x1 + (2,2) U11_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) U21_A(x1) = ((0,0),(0,1)) x1 + (1,1) U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) precedence: U21 > mark# = U11 = U41 partial status: pi(mark#) = [] pi(U11) = [1, 2] pi(U21) = [] pi(U41) = [3] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U41(X1,X2,X3)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2)) -> mark#(X1) p2: mark#(U41(X1,X2,X3)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,0)) x1 + (2,2) U11_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) U41_A(x1,x2,x3) = ((0,0),(0,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) precedence: mark# = U41 > U11 partial status: pi(mark#) = [] pi(U11) = [1] pi(U41) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U41(X1,X2,X3)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U41(X1,X2,X3)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 + (1,1) U41_A(x1,x2,x3) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (2,1) precedence: mark# = U41 partial status: pi(mark#) = [1] pi(U41) = [1, 3] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V2) -> a__isNat#(V2) p2: a__isNat#(s(V1)) -> a__isNat#(V1) p3: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p4: a__isNat#(plus(V1,V2)) -> a__U11#(a__isNat(V1),V2) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of r1, r2, r3, r7, r8, r9, r23, r24, r25, r26 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U11#_A(x1,x2) = ((1,1),(0,1)) x2 + (2,3) tt_A() = (13,2) a__isNat#_A(x1) = ((1,1),(0,1)) x1 + (1,3) s_A(x1) = ((1,1),(0,1)) x1 + (15,3) plus_A(x1,x2) = x1 + ((0,0),(1,1)) x2 + (10,0) a__isNat_A(x1) = ((1,1),(0,0)) x1 + (12,4) a__U12_A(x1) = ((1,1),(0,0)) x1 + (2,3) U12_A(x1) = (1,1) a__U11_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (17,4) a__U21_A(x1) = (14,2) U11_A(x1,x2) = (1,1) U21_A(x1) = (0,0) |0|_A() = (1,1) isNat_A(x1) = (1,1) precedence: a__isNat = a__U12 = a__U11 > a__U11# = a__isNat# = s > U12 = U11 > tt > plus = a__U21 = |0| = isNat > U21 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__isNat#) = [] pi(s) = [] pi(plus) = [] pi(a__isNat) = [] pi(a__U12) = [] pi(U12) = [] pi(a__U11) = [] pi(a__U21) = [] pi(U11) = [] pi(U21) = [] pi(|0|) = [] pi(isNat) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V2) -> a__isNat#(V2) p2: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__isNat(V1),V2) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V2) -> a__isNat#(V2) p2: a__isNat#(plus(V1,V2)) -> a__U11#(a__isNat(V1),V2) p3: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of r1, r2, r3, r7, r8, r9, r23, r24, r25, r26 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__U11#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (0,3) tt_A() = (2,2) a__isNat#_A(x1) = ((1,0),(1,1)) x1 + (3,3) plus_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (8,4) a__isNat_A(x1) = x1 + (3,4) a__U12_A(x1) = ((1,0),(0,0)) x1 + (2,3) U12_A(x1) = (1,1) a__U11_A(x1,x2) = ((1,0),(1,1)) x2 + (6,3) a__U21_A(x1) = (3,2) U11_A(x1,x2) = ((0,0),(0,1)) x2 + (1,1) U21_A(x1) = (1,1) |0|_A() = (1,1) s_A(x1) = (1,1) isNat_A(x1) = (1,1) precedence: a__U11# = a__isNat# > a__U11 > a__U12 > tt > plus = a__isNat > U12 > U11 > a__U21 = U21 > |0| > s > isNat partial status: pi(a__U11#) = [2] pi(tt) = [] pi(a__isNat#) = [1] pi(plus) = [2] pi(a__isNat) = [1] pi(a__U12) = [] pi(U12) = [] pi(a__U11) = [] pi(a__U21) = [] pi(U11) = [] pi(U21) = [] pi(|0|) = [] pi(s) = [] pi(isNat) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__isNat#(plus(V1,V2)) -> a__U11#(a__isNat(V1),V2) p2: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNat#(plus(V1,V2)) -> a__isNat#(V1) and R consists of: r1: a__U11(tt(),V2) -> a__U12(a__isNat(V2)) r2: a__U12(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt(),N) -> mark(N) r5: a__U41(tt(),M,N) -> a__U42(a__isNat(N),M,N) r6: a__U42(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r7: a__isNat(|0|()) -> tt() r8: a__isNat(plus(V1,V2)) -> a__U11(a__isNat(V1),V2) r9: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r10: a__plus(N,|0|()) -> a__U31(a__isNat(N),N) r11: a__plus(N,s(M)) -> a__U41(a__isNat(M),M,N) r12: mark(U11(X1,X2)) -> a__U11(mark(X1),X2) r13: mark(U12(X)) -> a__U12(mark(X)) r14: mark(isNat(X)) -> a__isNat(X) r15: mark(U21(X)) -> a__U21(mark(X)) r16: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r17: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r18: mark(U42(X1,X2,X3)) -> a__U42(mark(X1),X2,X3) r19: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r20: mark(tt()) -> tt() r21: mark(s(X)) -> s(mark(X)) r22: mark(|0|()) -> |0|() r23: a__U11(X1,X2) -> U11(X1,X2) r24: a__U12(X) -> U12(X) r25: a__isNat(X) -> isNat(X) r26: a__U21(X) -> U21(X) r27: a__U31(X1,X2) -> U31(X1,X2) r28: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r29: a__U42(X1,X2,X3) -> U42(X1,X2,X3) r30: a__plus(X1,X2) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a__isNat#_A(x1) = x1 + (1,1) plus_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (2,1) precedence: plus > a__isNat# partial status: pi(a__isNat#) = [1] pi(plus) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.