YES We show the termination of the TRS R: a(f(),a(f(),x)) -> a(x,x) a(h(),x) -> a(f(),a(g(),a(f(),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(f(),a(f(),x)) -> a#(x,x) p2: a#(h(),x) -> a#(f(),a(g(),a(f(),x))) p3: a#(h(),x) -> a#(g(),a(f(),x)) p4: a#(h(),x) -> a#(f(),x) and R consists of: r1: a(f(),a(f(),x)) -> a(x,x) r2: a(h(),x) -> a(f(),a(g(),a(f(),x))) The estimated dependency graph contains the following SCCs: {p1, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(f(),a(f(),x)) -> a#(x,x) p2: a#(h(),x) -> a#(f(),x) and R consists of: r1: a(f(),a(f(),x)) -> a(x,x) r2: a(h(),x) -> a(f(),a(g(),a(f(),x))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1,x2) = ((1,0),(1,1)) x2 + (2,2) f_A() = (3,3) a_A(x1,x2) = ((1,1),(0,0)) x2 + (1,1) h_A() = (1,1) precedence: a# > f > a > h partial status: pi(a#) = [] pi(f) = [] pi(a) = [] pi(h) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(h(),x) -> a#(f(),x) and R consists of: r1: a(f(),a(f(),x)) -> a(x,x) r2: a(h(),x) -> a(f(),a(g(),a(f(),x))) The estimated dependency graph contains the following SCCs: (no SCCs)