YES We show the termination of the TRS R: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),f(a(),x))) p2: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) p3: f#(a(),f(b(),x)) -> f#(a(),x) p4: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x))) p5: f#(b(),f(a(),x)) -> f#(b(),f(b(),x)) p6: f#(b(),f(a(),x)) -> f#(b(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} {p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),f(a(),x))) p2: f#(a(),f(b(),x)) -> f#(a(),x) p3: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of r1 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((0,1),(0,0)) x2 + (5,7) a_A() = (1,1) f_A(x1,x2) = x1 + ((0,0),(0,1)) x2 + (2,1) b_A() = (2,5) precedence: f# = f > a = b partial status: pi(f#) = [] pi(a) = [] pi(f) = [] pi(b) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),x) p2: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),x) p2: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of r1 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((0,1),(0,0)) x2 + (3,12) a_A() = (6,1) f_A(x1,x2) = ((0,0),(0,1)) x1 + ((0,0),(1,1)) x2 + (2,1) b_A() = (1,10) precedence: f# = a = f = b partial status: pi(f#) = [] pi(a) = [] pi(f) = [] pi(b) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((0,1),(0,0)) x2 + (3,2) a_A() = (2,3) f_A(x1,x2) = ((0,0),(0,1)) x2 + (1,1) b_A() = (4,3) precedence: f# = b > a > f partial status: pi(f#) = [] pi(a) = [] pi(f) = [] pi(b) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x))) p2: f#(b(),f(a(),x)) -> f#(b(),x) p3: f#(b(),f(a(),x)) -> f#(b(),f(b(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(0,0)) x2 + (8,0) b_A() = (13,1) f_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(0,0)) x2 + (1,11) a_A() = (7,10) precedence: f# > b = f = a partial status: pi(f#) = [] pi(b) = [] pi(f) = [] pi(a) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x))) p2: f#(b(),f(a(),x)) -> f#(b(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x))) p2: f#(b(),f(a(),x)) -> f#(b(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of r2 Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,0),(0,0)) x2 + (12,7) b_A() = (10,1) f_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(1,0)) x2 + (1,8) a_A() = (11,6) precedence: f# > a > b > f partial status: pi(f#) = [] pi(b) = [] pi(f) = [] pi(a) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(),f(a(),x)) -> f#(b(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(),f(a(),x)) -> f#(b(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((0,1),(0,0)) x2 + (3,2) b_A() = (2,3) f_A(x1,x2) = ((0,0),(0,1)) x2 + (1,1) a_A() = (4,3) precedence: f# = a > b > f partial status: pi(f#) = [] pi(b) = [] pi(f) = [] pi(a) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.