
A Confluent Pattern Calculus with Hedge
Variables

Sandra Alves1 Besik Dundua1,3 Mário Florido1

Temur Kutsia2

DCC-FC & LIACC, University of Porto, Portugal

RISC, Johannes Kepler University, Linz, Austria

VIAM, Ivane Javakhishvili Tbilisi State University, Georgia

Outline

Introduction

Preliminaries

Pattern Calculus

Conclusions and Future Work

Introduction

Preliminaries

Pattern Calculus

Conclusions and Future Work

Pattern Calculus

� Pattern calculi extend the lambda calculus with patterns.

� λ abstracts not only variables but also terms.

� Pattern calculi integrate pattern matching capabilities into the
λ-calculus.

� Pattern calculi are expressive, but in general the confluence
property is lost.

� To recover confluence, some restrictions on patterns and their
applications are imposed.

Pattern Calculus

� Lambda Calculus with Patterns was introduced by van
Oostrom in 1990.

� Since then various formalisms that address integration of
pattern matching capabilities with the lambda calculus have
been investigated.

� In 2007, Cirstea and Faure proposed a generic confluence
proof for the dynamic pattern calculus.

� The calculus is parametrized by a function that defines the
unitary matching algorithm. There are some conditions the
function should satisfy, in order the guarantee the confluence.

� We extended the dynamic pattern calculus with hedge
variables and studied conditions that should be satisfied by
the function that defines the finitary matching.

Introduction

Preliminaries

Pattern Calculus

Conclusions and Future Work

Terms

� M,N ::� x | f | pM Nq | pM X q | λVM.N | M � N

where

� x is a term variable

� X is a hedge variable

� f is a constant.

� pM Nq is an application of a term to a term

� pM X q is an application of a term to a hedge variable

Terms

Defined by the grammar:

M,N ::� x | f | pM Nq | pM X q | λVM.N | M � N

� λVM.N is an abstraction where the term M is called a
pattern.

� V is a subset of the set of free variables of M, representing
the set of variables bound by the abstraction.

� For example, a term λtx ,XufxYX .gXyY has bound variables
x ,X and free variables y ,Y .

� � is a associative, commutative, and idempotent. Moreover,
application distributes over � both from the left and from the
right. We write ACID for this property.

Terms

Defined by the grammar:

M,N ::� x | f | pM Nq | pM X q | λVM.N | M � N

� λVM.N is an abstraction where the term M is called a
pattern.

� V is a subset of the set of free variables of M, representing
the set of variables bound by the abstraction.

� For example, a term λtx ,XufxYX .gXyY has bound variables
x ,X and free variables y ,Y .

� � is a associative, commutative, and idempotent. Moreover,
application distributes over � both from the left and from the
right. We write ACID for this property.

Terms

Defined by the grammar:

M,N ::� x | f | pM Nq | pM X q | λVM.N | M � N

� λVM.N is an abstraction where the term M is called a
pattern.

� V is a subset of the set of free variables of M, representing
the set of variables bound by the abstraction.

� For example, a term λtx ,XufxYX .gXyY has bound variables
x ,X and free variables y ,Y .

� � is a associative, commutative, and idempotent. Moreover,
application distributes over � both from the left and from the
right. We write ACID for this property.

ACID Normal Form

We work with terms in the ACID normal form with respect to �
and application.

Example

� A term not in the ACID normal form

λtx ,Xupfx � gxqX . fxpgx � gX � gxq

� A term in the ACID normal form

λtx ,XupfxX � gxX q. pfxpgxq � fxpgX qq

Hedges and Substitution

� Hedges are finite (possible empty) sequences of terms and
hedge variables.

� Notation: h for hedges. ε for the empty hedge.

� For readability, we put hedges in angle brackets if they have
more than one element, e.g., xM,X ,Ny.

� A substitution is a mapping from term variables to terms, and
from hedge variables to hedges, such that all but finitely many
term and hedge variables are mapped to themselves.

� Notation: σ and ϑ for substitutions.

� The composition is defined in the standard way.

Hedges and Substitution

� Hedges are finite (possible empty) sequences of terms and
hedge variables.

� Notation: h for hedges. ε for the empty hedge.

� For readability, we put hedges in angle brackets if they have
more than one element, e.g., xM,X ,Ny.

� A substitution is a mapping from term variables to terms, and
from hedge variables to hedges, such that all but finitely many
term and hedge variables are mapped to themselves.

� Notation: σ and ϑ for substitutions.

� The composition is defined in the standard way.

Hedges and Substitution

� Hedges are finite (possible empty) sequences of terms and
hedge variables.

� Notation: h for hedges. ε for the empty hedge.

� For readability, we put hedges in angle brackets if they have
more than one element, e.g., xM,X ,Ny.

� A substitution is a mapping from term variables to terms, and
from hedge variables to hedges, such that all but finitely many
term and hedge variables are mapped to themselves.

� Notation: σ and ϑ for substitutions.

� The composition is defined in the standard way.

Hedges and Substitution

� Hedges are finite (possible empty) sequences of terms and
hedge variables.

� Notation: h for hedges. ε for the empty hedge.

� For readability, we put hedges in angle brackets if they have
more than one element, e.g., xM,X ,Ny.

� A substitution is a mapping from term variables to terms, and
from hedge variables to hedges, such that all but finitely many
term and hedge variables are mapped to themselves.

� Notation: σ and ϑ for substitutions.

� The composition is defined in the standard way.

Substitution Application

Term: M � λtx ,Y u

Phkkikkj
f X xY .

Nhkkkkikkkkj
ypgX qxZ

Substitution: σ � tx ÞÑ gx , y ÞÑ λxx .fxa,Z ÞÑ ε,

X ÞÑ xλxx .x , λxx .px � fxqyu

Mσ � λtx 1,Y u

Pσhkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj
f pλxx .xqpλxx .px � fxqqx 1Y .

Nσhkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj
pλxx .fxaqpgpλxx .xqpλxx .px � fxqqqx 1

Matching Equation and Solution

Equation: fXxY Î? fabcde

Solutions: σ1 � tX Ñ ε, x Ñ a,Y Ñ xb, c , d , eyu

σ2 � tX Ñ a, x Ñ b,Y Ñ xc , d , eyu

σ3 � tX Ñ xa, by, x Ñ c ,Y Ñ xd , eyu

σ4 � tX Ñ xa, b, cy, x Ñ d ,Y Ñ eu

σ5 � tX Ñ xa, b, c , dy, x Ñ e,Y Ñ εu

Introduction

Preliminaries

Pattern Calculus

Conclusions and Future Work

Operational Semantics

Sol : A function which takes a pattern matching equation and
returns a set of solutions.

βp : pλVM.NqQ Ñ Nσ1 � � � � � Nσn,

where Nσ1, . . . ,Nσn, n ¥ 1, are terms

SolpM !V Qq � tσ1, . . . , σnu, n ¥ 1,

M and Q are not of the form W1 � W2.

Dl : λVM1 � M2.N Ñ λVM1.N � λVM2.N.

Dr : λVM.N1 � N2 Ñ λVM.N1 � λVM.N2.

Pattern reduction ÑP is a compatible closure of the union of
relations βp,Dl and Dr.

Operational Semantics

Sol : A function which takes a pattern matching equation and
returns a set of solutions.

βp : pλVM.NqQ Ñ Nσ1 � � � � � Nσn,

where Nσ1, . . . ,Nσn, n ¥ 1, are terms

SolpM !V Qq � tσ1, . . . , σnu, n ¥ 1,

M and Q are not of the form W1 � W2.

Dl : λVM1 � M2.N Ñ λVM1.N � λVM2.N.

Dr : λVM.N1 � N2 Ñ λVM.N1 � λVM.N2.

Pattern reduction ÑP is a compatible closure of the union of
relations βp,Dl and Dr.

Operational Semantics

Sol : A function which takes a pattern matching equation and
returns a set of solutions.

βp : pλVM.NqQ Ñ Nσ1 � � � � � Nσn,

where Nσ1, . . . ,Nσn, n ¥ 1, are terms

SolpM !V Qq � tσ1, . . . , σnu, n ¥ 1,

M and Q are not of the form W1 � W2.

Dl : λVM1 � M2.N Ñ λVM1.N � λVM2.N.

Dr : λVM.N1 � N2 Ñ λVM.N1 � λVM.N2.

Pattern reduction ÑP is a compatible closure of the union of
relations βp,Dl and Dr.

Operational Semantics

Sol : A function which takes a pattern matching equation and
returns a set of solutions.

βp : pλVM.NqQ Ñ Nσ1 � � � � � Nσn,

where Nσ1, . . . ,Nσn, n ¥ 1, are terms

SolpM !V Qq � tσ1, . . . , σnu, n ¥ 1,

M and Q are not of the form W1 � W2.

Dl : λVM1 � M2.N Ñ λVM1.N � λVM2.N.

Dr : λVM.N1 � N2 Ñ λVM.N1 � λVM.N2.

Pattern reduction ÑP is a compatible closure of the union of
relations βp,Dl and Dr.

Operational Semantics

Sol : A function which takes a pattern matching equation and
returns a set of solutions.

βp : pλVM.NqQ Ñ Nσ1 � � � � � Nσn,

where Nσ1, . . . ,Nσn, n ¥ 1, are terms

SolpM !V Qq � tσ1, . . . , σnu, n ¥ 1,

M and Q are not of the form W1 � W2.

Dl : λVM1 � M2.N Ñ λVM1.N � λVM2.N.

Dr : λVM.N1 � N2 Ñ λVM.N1 � λVM.N2.

Pattern reduction ÑP is a compatible closure of the union of
relations βp,Dl and Dr.

Example: No Confluence

pλZ fZ .pλtX ,Y ufXY .fX qfZ qfab

pλZ fZ .pf � fZ qqfab pλtX ,Y ufXY .fX qfab

f � fab f � fa � fab

The example shows that we do not have confluence in general!

How to Obtain Confluence

Goal: Impose restrictions on Sol to guarantee confluence.

Sufficient Conditions for Confluence

Condition 1: Preservation of Free Variables

σ P SolpP !V Mq implies

#
Dompσq � V
fvpRanpσqq � fvpMq

Example

� Assume that the term pλVP.NqM reduces to the term
Nσ1 � � � � � Nσn with SolpP !V Mq � tσ1, . . . , σnu.

� Then the inclusion fvpNσi q � pλVP.NqM should hold for any
σi , 0 i ¤ n.

Sufficient Conditions for Confluence

Condition 2: Stability by Substitution

SolpP !V Mq � σ implies

#
@θ s.t. Varpϑq X V � H

SolpPθ !V Mθq � σθ

where σ � tσ1, . . . , σnu and σθ � tpσ1θq|V , . . . , pσnθq|Vu, n ¥ 1

Example

Violation of the Stability by Substitution Leads to Non-Confluence:

pλZ fZ .pλtX ,Y ufXY .fX qfZ qfab

pλZ fZ .pf � fZ qqfab pλtX ,Y ufXY .fX qfab

f � fab f � fa � fab

Sufficient Conditions for Confluence

Condition 3: Stability by Reduction

$'&
'%

SolpP !V Mq � σ

P ñP P 1,

M ñP M 1,

implies

$'&
'%

SolpP 1 !V M 1q � θ

@1¤i¤nD1¤j¤m s.t. σi ñP θj

@1¤j¤mD1¤i¤n s.t σi ñP θj .

where σ � tσ1, . . . , σnu, n ¥ 1 and θ � tθ1, . . . , θmu,m ¥ 1.

ñP is the parallel reduction (details on the next slide).

Parallel Reduction

s stands for a hedge variable or a term.

s ñP s

s1 ñP s 1
1 . . . sn ñP s 1

n

xs1, . . . , sny ñP xs 1
1, . . . , s

1
ny

M ñP M 1 s ñP s 1

M s ñP M 1 s 1

M ñP M 1 N ñP N 1

λVM.N ñP λVM 1.N 1

M1 ñP M 1
1 M2 ñP M 1

2 N ñP N 1

λVpM1 � M2q.N ñP λVM 1
1.N

1 � λVM 1
2.N

1

M ñP M 1 N ñP N 1

M � N ñP M 1 � N 1

M ñP M 1 N1 ñP N 1
1 N2 ñP N 1

2

λVM.pN1 � N2q ñP λVM 1.N 1
1 � λVM 1.N 1

2

M ñP M 1 N ñP N 1 Q ñP Q 1

pλVM.NqQ ñP N 1σ1 � � � � � N 1σn
where SolpM 1 !V Q 1q � tσ1, . . . , σnu

Definition of parallel reduction is extended to substitutions having the
same domain by setting θ ñP θ

1 if for all v P Dompθq � Dompθ1q, we
have vθ ñP vθ1.

Example

Violation of the Stability by Reduction Leads to Non-Confluence.

pλtx,Y u

P
hkkikkj

xY .xq

M
hkkkkikkkkj

ppλzz .zqaq

tx Ñ pλzz .zq,Y Ñ au

pλzz .zq

tx Ñ a,Y Ñ εu

pλtx,Y u

P
hkkikkj

xY .xqa

a

Confluence

Theorem
The pattern calculus with hedge variables where Sol satisfies
preservation of free variables, stability by substitution and stability
by reduction properties is confluent.

Matching with Hedge Variables

We can define SolpP !V Mq as a partial function with the
following conditions:

� If P contains a λ-abstraction or a �, or if P �� x and M
contains a λ-abstraction or a � or a hedge variables, or if
fvpPq �� V, then undifiend.

� Otherwise, SolpP !V Mq normalizes the matching problem
P Î? M with respect to following rules and collects
substitutions σ from the success states.

M Î? Mùε H.

P1 P2 Î
? M1 M2ùε tP1 Î

? M1,P2 !
? M2u

x Î? Mùtx ÞÑMu H.

P X Î? Ms1 � � � sn s 11 � � � s
1
mùtX ÞÑxs 1

1,...,s
1

myu
tP Î? Ms1 � � � snu.

Introduction

Preliminaries

Pattern Calculus

Conclusions and Future Work

Concluding Remarks

� We integrated hedge variables in the pattern calculus.

� Studied operational semantics of the derived calculus,
parametrized by the function Sol for finitary matching.

� Imposed conditions on the Sol function under which the
calculus is confluent.

� A concrete example of Sol which satisfies those conditions is
hedge matching.

Concluding Remarks

� We integrated hedge variables in the pattern calculus.

� Studied operational semantics of the derived calculus,
parametrized by the function Sol for finitary matching.

� Imposed conditions on the Sol function under which the
calculus is confluent.

� A concrete example of Sol which satisfies those conditions is
hedge matching.

Concluding Remarks

� We integrated hedge variables in the pattern calculus.

� Studied operational semantics of the derived calculus,
parametrized by the function Sol for finitary matching.

� Imposed conditions on the Sol function under which the
calculus is confluent.

� A concrete example of Sol which satisfies those conditions is
hedge matching.

Concluding Remarks

� We integrated hedge variables in the pattern calculus.

� Studied operational semantics of the derived calculus,
parametrized by the function Sol for finitary matching.

� Imposed conditions on the Sol function under which the
calculus is confluent.

� A concrete example of Sol which satisfies those conditions is
hedge matching.

Work in Progress

� Relaxing conditions for the Sol function under which
confluence is guaranteed.

� Introduction of types and studying properties such as subject
reduction, strong normalization, etc.

	Introduction
	Preliminaries
	Pattern Calculus
	Conclusions and Future Work

