Commutation via Relative Termination

work in progress

Nao Hirokawa

Aart Middeldorp

JAIST

University of Innsbruck

Confluence by Decreasingness

Theorem

Hirokawa and Middeldorp 2011

left-linear and locally confluent TRS \mathcal{R} is confluent if $\mathsf{CPS}(\mathcal{R})/\mathcal{R}$ is terminating

critical peak steps

•
$$\overline{\mathsf{CPS}(\mathcal{R})} = \left\{ \begin{array}{l} s \to t \\ s \to u \end{array} \middle| t \xleftarrow{\mathcal{R}} s \xrightarrow{\mathcal{R}} u \text{ is critical peak} \right\}$$

$$\bullet \xrightarrow{\mathcal{S}/\mathcal{R}} = \xrightarrow{*} \cdot \xrightarrow{*} \cdot \xrightarrow{*} \xrightarrow{\mathcal{R}}$$

NOTE

generalization of

- Rosen's orthogonality (1973)
- left-linear case of Knuth and Bendix' completeness criterion

Example I

consider locally confluent non-terminating TRS \mathcal{R} :

$$\begin{array}{lll} x+0\to x & & x+\mathsf{s}(y)\to\mathsf{s}(x+y) & & \mathsf{ones}\to\mathsf{s}(\mathbf{0}):\mathsf{ones} \\ \mathbf{0}+y\to y & & \mathsf{s}(x)+y\to\mathsf{s}(x+y) \end{array}$$

critical peak steps $CPS(\mathbb{R})$:

$$\begin{aligned} 0+0 &\to 0 \\ 0+\mathsf{s}(y) &\to \mathsf{s}(0+y) \quad \mathsf{s}(x)+0 \to \mathsf{s}(x+0) \quad \mathsf{s}(x)+\mathsf{s}(y) \to \mathsf{s}(x+\mathsf{s}(y)) \\ 0+\mathsf{s}(y) &\to \mathsf{s}(y) \qquad \mathsf{s}(x)+0 \to \mathsf{s}(x) \qquad \mathsf{s}(x)+\mathsf{s}(y) \to \mathsf{s}(\mathsf{s}(x)+y) \end{aligned}$$

 $CPS(\mathcal{R})/\mathcal{R}$ is terminating. hence \mathcal{R} is confluent

- presence of overlaps is no problem
- very weak at commutative rule $x + y \rightarrow y + x$

Commutativity

DEFINITION

 \rightarrow and \rightarrow commute if $^*\leftarrow \cdot \rightarrow^* \subseteq \rightarrow^* \cdot ^*\leftarrow$

ightarrow and ightarrow locally commute if $\leftarrow \cdot \rightarrow \subseteq \rightarrow^* \cdot * \leftarrow$

LEMMA

- \bullet \mathcal{R} is confluent if \mathcal{R} and \mathcal{R} commute
- $\mathcal{R} \cup \mathcal{S}$ is confluent if \mathcal{R} and \mathcal{S} are confluent and commute

Example I

is next TRS confluent?

$$\begin{array}{lll} x+0\to x & x+\mathsf{s}(y)\to\mathsf{s}(x+y) & x+\mathsf{p}(y)\to\mathsf{p}(x+y) \\ 0+y\to y & \mathsf{s}(x)+y\to\mathsf{s}(x+y) & \mathsf{p}(x)+y\to\mathsf{p}(x+y) \\ x+y\to y+x & \end{array}$$

not confluent:

$$p(s(x+y)) \stackrel{*}{\underset{\mathcal{R}}{\longleftarrow}} s(x) + p(y) \stackrel{*}{\underset{\mathcal{R}}{\longrightarrow}} s(p(x+y))$$

Commutation by Closedness

do \mathcal{R} and \mathcal{S} commute?

$$\begin{array}{lll} x+0\to x & x+\mathsf{s}(y)\to\mathsf{s}(x+y) & x+\mathsf{p}(y)\to\mathsf{p}(x+y) \\ 0+y\to y & \mathsf{s}(x)+y\to\mathsf{s}(x+y) & \mathsf{p}(x)+y\to\mathsf{p}(x+y) \\ x+y\to y+x & \end{array}$$

THEOREM Toyama 1988; van Oostrom 1994; Aoto, Yoshida and Toyama 2009

left-linear TRSs \mathcal{R} and \mathcal{S} commute if

$$\underset{\mathcal{R}}{\longleftarrow} \rtimes \xrightarrow{\epsilon} \subseteq \xrightarrow{\circ} \cdot \overset{*}{\swarrow} \qquad \qquad \underset{\mathcal{R}}{\longleftarrow} \rtimes \xrightarrow{>\epsilon} \subseteq \overset{\circ}{\swarrow}$$

Aim: Unify

Theorem

Aoto, Yoshida and Toyama 2009

left-linear TRSs \mathcal{R} and \mathcal{S} commute if

$$\underset{\mathcal{R}}{\longleftarrow} \rtimes \xrightarrow{\epsilon} \subseteq \xrightarrow{\mathcal{S}} \cdot \xrightarrow{*} \qquad \qquad \underset{\mathcal{R}}{\longleftarrow} \rtimes \xrightarrow{\epsilon} \subseteq \underset{\mathcal{S}}{\longleftarrow} \subseteq \underset{\mathcal{R}}{\longleftarrow}$$

$$\stackrel{\epsilon}{\longleftarrow} \ltimes \stackrel{>\epsilon}{\longrightarrow} \subseteq \stackrel{\longleftarrow}{\longleftarrow}$$

Theorem

Hirokawa and Middeldorp 2011

left-linear and locally confluent TRS \mathcal{R} is confluent if $CPS(\mathcal{R})/\mathcal{R}$ is terminating

$$\mathsf{CPS}(\mathcal{R}) = \left\{ \begin{array}{c|c} s \to t \\ s \to u \end{array} \middle| t \xleftarrow{\mathcal{R}} s \xrightarrow{\mathcal{R}} u \text{ is critical peak } \right\}$$

find generalized criterion

Main Result

Theorem

left-linear and locally commuting TRSs $\mathcal R$ and $\mathcal S$ commute if $\mathsf{CPS}(\mathcal R,\mathcal S)/(\mathcal R\cup\mathcal S)$ is terminating

$$\mathsf{CPS}(\mathcal{R},\mathcal{S}) = \left\{ \left. \begin{matrix} s \to t \\ s \to u \end{matrix} \right| t \xleftarrow{\mathcal{R}} s \xrightarrow{\mathcal{S}} u \text{ is non-closed critical peak} \right\}$$

- $\bullet \ t \xleftarrow{\mathcal{R}} s \xrightarrow{\epsilon} u \text{ is closed if } t \xrightarrow{\mathfrak{S}} \cdot \xleftarrow{*}_{\mathcal{R}} u$
- $\bullet \ t \xleftarrow{\epsilon} s \xrightarrow{>\epsilon} u \text{ is closed if } t \xleftarrow{\bullet} u$

Proof

if $t \stackrel{\longleftarrow}{\longleftarrow} s \stackrel{\longrightarrow}{\longrightarrow} u$ then

 $(\rightarrow, \rightarrow)$ is decreasing with respect to >, where

- \bullet > is extension of $\rightarrow_{\mathsf{CPS}(\mathcal{R},\mathcal{S})/(\mathcal{R}\cup\mathcal{S})}$ with bottom \bot
- $\bullet \ t \to_s u \text{ if } s = \bot \text{ and } t \xrightarrow[\mathcal{R}]{} u \qquad t \to_s u \text{ if } s \xrightarrow[\mathcal{R} \cup \mathcal{S}]{}^* t \xrightarrow[\mathcal{S}]{} u$

Remark

our proof

- uses proof terms for multisteps:
 - let F(y) denote rule $0 + y \rightarrow y$
 - $s(0+0) \longrightarrow s(0)$ is witnessed by s(F(0))

separates critical peak lemma from main proof

Example of Direct Usage

left-linear locally confluent TRS \mathcal{R}

$$\begin{array}{lll} x + \mathbf{0} \to x & x + \mathbf{s}(y) \to \mathbf{s}(x+y) & x + \mathbf{p}(y) \to \mathbf{p}(x+y) \\ \mathbf{0} + y \to y & \mathbf{s}(x) + y \to \mathbf{s}(x+y) & \mathbf{p}(x) + y \to \mathbf{p}(x+y) \\ \hline \mathbf{x} + \mathbf{y} \to \mathbf{y} + \mathbf{x} & \mathbf{s}(\mathbf{p}(x)) \to x & \mathbf{p}(\mathbf{s}(x)) \to x \end{array}$$

non-closed critical peak steps $CPS_{\mathcal{R}}(\mathcal{R})$

$$\begin{array}{lll} \mathsf{p}(x) + \mathsf{s}(y) \to \mathsf{s}(\mathsf{p}(x) + y) & \mathsf{p}(x) + \mathsf{s}(y) \to \mathsf{p}(x + \mathsf{s}(y)) \\ \mathsf{s}(x) + \mathsf{p}(y) \to \mathsf{p}(\mathsf{s}(x) + y) & \mathsf{s}(x) + \mathsf{p}(y) \to \mathsf{s}(x + \mathsf{p}(y)) \\ \mathsf{s}(x) + \mathsf{p}(y) \to \mathsf{s}(x + \mathsf{p}(y)) & \mathsf{s}(x) + \mathsf{p}(y) \to \mathsf{p}(\mathsf{s}(x) + y) \\ \mathsf{p}(x) + \mathsf{s}(y) \to \mathsf{p}(x + \mathsf{s}(y)) & \mathsf{p}(x) + \mathsf{s}(y) \to \mathsf{p}(\mathsf{s}(x) + y) \\ x + \mathsf{s}(\mathsf{p}(y)) \to x + y & x + \mathsf{s}(\mathsf{p}(y)) \to \mathsf{s}(x + \mathsf{p}(y)) \\ \mathsf{s}(\mathsf{p}(x)) + y \to x + y & x + \mathsf{p}(\mathsf{s}(y)) \to \mathsf{p}(x + \mathsf{s}(y)) \\ \mathsf{p}(\mathsf{s}(x)) + y \to x + y & x + \mathsf{p}(\mathsf{s}(y)) \to \mathsf{p}(x + \mathsf{s}(y)) \\ \mathsf{p}(\mathsf{s}(x)) + y \to x + y & \mathsf{p}(\mathsf{s}(x)) + y \to \mathsf{p}(\mathsf{s}(x) + y) \end{array}$$

 $CPS(\mathcal{R}, \mathcal{R})/\mathcal{R}$ is terminating. hence \mathcal{R} is confluent

Experiments on 168 left-linear TRSs in Cops

	direct				decomposition
	closed	critical peak	new	rule label	new+rl
yes	21	28	41	50	62
timeout	0	0	0	1	106

- 30 sec timeout
- local confluence/commutation check by 4-steps rewriting
- \bullet (relative) termination check by T_TT_2
- Bruteforce for decomposition

REMARK

$$41 - (21 \cup 28) = 2$$

Summary

unified

Toyama (1988) van Oostrom (1994) H-M (2011)
development closed critical peak steps

FUTURE WORK

- simplify proof
- efficient algorithm for decomposition
- integrate more:

Okui (1998) Oyamaguchi-Ohta (2004) van Oostrom (2012)
simultaneous closed upside parallel closed critical valley steps

Commutation via Relative Termination