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Fig. 1.1: The subject matter of this book, and how it is situated in some of
the last century’s developments. For a detailed account of the history of in
particular the first highlighted subject, see ’History of Lambda-calculus and
Combinatory Logic’, by Felice Cardone and J. Roger Hindley 2006.

historical time-flow

confluence arose here

infinitary rewriting arose 
here
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3.2 Properties of reduction 71

Remark 3.2. Beware: The notion of sub-ARS, and later of sub-TRS, pertains only to
shrinking the domain, and shrink the reduction relation of the sub-ARS accordingly.
It does not cover shrinking the signature by omitting some of the reduction relations.
Added in print: Joerg proposes to adopt Vincent’s definition, then we can call the
present notion ’closed’. Todo.

CR

WCR≤1

CR= NF UN UN→

&WCR SN WN

&

Fig. 3.1: Relations between abstract reduction properties.

In the next theorem some implications between some of the basic properties are
stated. The first and third assertion are easily checked; the second requires more
consideration, in the next section.

Theorem 3.1. (i) CR ⇒ NF ⇒ UN
(ii) SN & WCR ⇒ CR (Newman’s Lemma)

(iii) UN & WN ⇒ CR

The following proposition from de Vrijer [dV87, dV99] is easy but important; it
is the essence of the infinitary confluence modulo some set of undefined terms, in
Chapter xx.

Proposition 3.1. Let A = (A,→1) and A = (A,→2) be two ARSs. Suppose

(i) A ⊆ B ;
(ii) �1⊆�2 ;

(iii) NF(A )⊆ N F (B), where NF is the set of normal forms.

Then

B � U N ⇒ A � U N .



I,K,S, B

# = $x.xx
% = ##

 & = $xy.y(xy) = SI, Smullyan’s Owl

' = &# = &(&(&(& ... = Y&

Y0 = $f. ($x.f(xx)) ($x.f(xx))  Curry’s fpc
Y1 = ($ab. b(aab)) ($ab. b(aab))  Turing’s fpc

Y0 & = Y1
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Henk Barendregt, spring 1971
TABLE 10

Parallel Reduction a! la Tait and Martin"Lo# f

M bw!M

M bw!M$
*x .M bw!*x .M$

M bw!M$ N bw!N$
MN bw!M$N$

M bw!M$ N bw!N$
(*x .M)N bw!M$[x :=N$]

We use the notation bw! for parallel reduction. In the style of Tait and Martin!
Lo" f, it is defined by the inductive clauses in Table 10. It characterizes complete
developments, in the sense that M bw!N if and only if there is a complete develop-
ment from M to N.
In Aczel [Acz78] the last clause is replaced by:

M bw!*x .M$ N bw!N$
MN bw!M$[x :=N$]

.

Now there is a complete ;-superdevelopment form M to N if and only if M bw!N
according to Aczel's definition.

Example 12.1. In the first definition, due to Tait and Martin-Lo" f, we do not
have IIII bw!I (with I#*x .x); in Aczel's definition we do.
Likewise (*xyz .xyz) abc bw!abc and even II(*xyz .xyz) abc bw!abc.

Appendix B: Failure of FD for *-residuals

We give the counterexample to finite developments for the notion of *-residual
in *;' from Klop [Klo80]. See Definition 5.3.
The following is an infinite reduction in which all the contracted redexes are

*-residuals of redexes in M0 .

M0 # (*0x .xx)(*1z . (*2y .yy) z)

!*0 (*1z . (*2y .yy) z)(*1z . (*2y .yy) z)

!*1 (*2y .yy)(*1z . (*2y .yy) z)

! ! (*2y .yy)(*1z . (*2y .yy) z)

! } } }

Note that FD does hold for (ordinary) CF-residuals in *;'. See, e.g., Barendregt,
Bergstra, Klop, and Volken [BBKV76], Chapter II, using the method of decreasing
weights (also used for FD in *; in Barendregt [Bar84]). FD also holds for cluster
residuals (de Vrijer [Vri89]).
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1924. "Über die Bausteine der mathematischen Logik"
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of which have themselves as arguments and values)”, [Morris, 1968, p.123]. The

answer to this puzzle was to be found less than one year later by Dana Scott with

his set-theoretic model for the λ-calculus, see §9.1 below.

7.2 Theory of reductions

Ever since the original proof of the confluence of λβ-reduction in [Church and

Rosser, 1936], a general feeling had persisted in the logic community that a shorter

proof ought to exist. The work on abstract confluence proofs described in §5.2

did not help, as it was aimed mainly at generality, not at a short proof for λβ in

particular.

For CL, in contrast, the first confluence proof was accepted as reasonably simple;

its key idea was to count the simultaneous contraction of a set of non-overlapping

redexes as a single unit step, and confluence of sequences of these unit steps was

easy to prove, [Rosser, 1935, p.144, Thm. T12].

Then in 1965 William Tait presented a short confluence proof for CL to a sem-

inar on λ organized by Scott and McCarthy at Stanford. Its key was a very neat

definition of a unit-step reduction by induction on term-structure. Tait’s units were

later seen to be essentially the same as Rosser’s, but his inductive definition was

much more direct. Further, it could be adapted to λβ. (This possibility was noted

at the seminar in 1965, see [Tait, 2003, p.755 footnote]). Tait did not publish his

method directly, but in the autumn of 1968 he showed his CL proof to Per Martin-

Löf, who then adapted it to λβ in the course of his work on type theory and included

the λβ proof in his manuscript [Martin-Löf, 1971b, pp.8–11, §2.5].

Martin-Löf’s λβ-adaptation of Tait’s proof was quickly appreciated by other

workers in the subject, and appeared in [Barendregt, 1971, Appendix II], [Stenlund,

1972, Ch. 2] and [Hindley et al., 1972, Appendix 1], as well as in a report by Martin-

Löf himself, [Martin-Löf, 1972b, §2.4.3].
42

In λ, each unit step defined by Tait’s structural-induction method turned out to

be a minimal-first development of a set of redexes (not necessarily disjoint). Curry

had introduced such developments in [Curry and Feys, 1958, p.126], but had used

them only indirectly; Hindley had used them extensively in his thesis, [Hindley,

1969a, p.547,“MCD”], but only in a very abstract setting. They are now usually

called parallel reductions, following Masako Takahashi. In [Takahashi, 1989] the

Tait-Martin-Löf proof was further refined, and the method of dividing reductions

into these unit steps was also applied to simplify proofs of other main theorems on

reductions in λ.

Tait’s structural-induction method is now the standard way to prove confluence

in λ and CL. However, some other proofs give extra insights into reductions that

this method does not, see for example the analysis in [Barendregt, 1981, Chs. 3,

11–12].

Besides confluence, major themes in the study of λβ-reductions have been given

by theorems on finiteness of developments, standardisation and the equivalence of
complete developments, all depending either directly or indirectly on the concept of

residual . The first two of these theorems were proved for λI-terms in [Church and

Rosser, 1936, Lemma 1], and the second was proved for CL in [Rosser, 1935, p.142,

Thm. T9]; but their analogues for the full λK-calculus are more subtle and did not

come until much later.

The finiteness-of-developments theorem for λK was first proved by Schroer in his

unpublished thesis [Schroer, 1965, Part I, Thm. 6.20]. It was re-proved later using

different methods: by Martin Hyland in 1973 [Hyland, 1975, Thm. 3.6], by Hindley

42The earlier manuscript [Martin-Löf, 1971b] was not published, as the system described in it
was inconsistent from the standpoint of the propositions-as-types correspondence, see §8.1.4 below;
but its confluence proof for λβ was not faulty.

21
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Consideration is given to the equational theory !" of lambda calculus 

extended with constants ", "0, "1 and axioms for subjective pairing: 

"0("XY)=X, "1("XY)=Y, "("0X )("1X)=X. 

The reduction system that one obtains by reading the equations 

are reductions (from left to right) is not Church-Rosser. 

Despite this failure, the author obtains a syntactic consistency 

proof of !" and shows that it is a conservative extension of the pure ! calculus

Extending the lambda calculus with 
surjective pairing is conservative

Klop, de Vrijer 1989: but UN holds

nasty overlap

De Vrijer 1989
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ε(δ(CA)(CA))

β

δ

ε

δ

ε

ε

δ

ε

δ ε

ε

δ

BT
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Question: what about $∞( & and $∞( ) ?

A Question of Balance (The Moody Blues 1970)

28.1 Non-left linear reduction 423

BTs of the three relevant terms CA, ε(CA) and C(ε(CA)). They are ∆ , ε∆ , and
µx.δ (ε∆)x, respectively. The treatment will be analogous to the more complicated
version introduced next, and will therefore not be given here separately. ��

Remark 28.1. For Propositions 28.1 and 28.2 the situation is:

M →δ M
� ⇒ BT(M)→≤ω

δ BT(M�)

As a notational reminder →≤ω
δ stands for a δ -reduction of length ≤ ω . For the

next counterexamples the situation is more complex and we need a definition.

Definition 28.3. (i) An occurrence of δ is called balanced if it is the head of a
δ -redex δMM, with M ∈ Ter(λδε).

(ii) Analogously, for the case of Surjective Pairing below, an occurrence of π
is called balanced if it is the head of a π-redex π(π0M)(π1M), with M ∈
Ter(λππ0π1).

A slightly more complex variant of δ -reduction comes close to Surjective Pair-
ing.

Definition 28.4 (J.R. Hindley [B7̈5]). The reduction δH is defined on Ter(λδ ) by

δxx →δH
x

The reason that δH is more complex than the versions in Definitions 28.1 and 28.2
lies in the possibility that new redexes can be created by application of the δH -rule,
which is now a collapsing rule (i.e. the right-hand side is a single variable), e.g.
δH III→δH

II. For Surjective Pairing the same holds.

Proposition 28.3. The reduction βδH is not CR. By a fixed point construction there

are terms C,A such that

Cx � ε(δx(Cx))

A �CA

Proof. We have reductions that are almost similar to the ones for βδK .

A CA ε(δA(CA)) ε(δ (CA)(CA)) ε(CA)

C(ε(CA))

The BTs of the relevant trio of terms CA, ε(CA), C(ε(CA)) are respectively the trees
µx.ε(δxx)≡ T , εT and µx.ε(δ (εT )x). The corresponding cyclic graphs are drawn
in the lower plane in Figure 28.1.

First note that there was an unbalancing effect leading to BT(C(ε(CA)) (the
leftmost cyclic graph in Figure 28.1) whose top δ is unbalanced.
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23-06-13 19:16Orthogonal higher-order rewrite systems are confluent - Springer

Page 1 of 4http://link.springer.com/chapter/10.1007/BFb0037114

Look Inside Get AccessFind out how to access preview-only content
Typed Lambda Calculi and Applications
Lecture Notes in Computer Science Volume 664, 1993, pp 306-317

Orthogonal higher-order rewrite systems are confluent
Abstract
The results about higher-order critical pairs and the confluence of OHRSs provide a firm foundation for
the further study of higher-order rewrite systems. It should now be interesting to lift more results and
techniques both from term-rewriting and !-calculus to the level of HRSs. For example termination proof
techniques are much studied for TRSs and are urgently needed for HRSs; similarly the extension of our
result to weakly orthogonal HRSs or even to Huet's “parallel closed” systems is highly desirable.
Conversely, a large body of !-calculus reduction theory has been lifted to CRSs [10] already and should
be easy to carry over to HRSs.

Finally there is the need to extend the notion of an HRS to more general left-hand sides. For example the
eta-rule for the case-construct on disjoint unions [15] case(U,!x.F(inl(x)),!y.G(inr(y))) → F(U) is outside
our framework, whichever way it is oriented.



Van Oostrom, van Raamsdonk 1994

$(* ! CR
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( xy. x )

( y. ) !

( y. ) !

( y. ) !

FIG.1. Böhm reduction graph of ( xy. x ) "

Remark 3.2. 1. The proviso M / in the rule uns serves to prevent the useless

rewriting step ! .

2.  The two -normalisation rules ( l) and ( d)  ( -left and -down) are in fact
superfluous as they are instances of the uns rule. Yet we include them, to facilitate
comparison with the labeled Böhm reduction  system in the sequel.
3.   Overlap

THEOREM 3.1. Böhm reduction is confluent.

Proof. A proof of this fact can be found in Barendregt [84], p.384-391, leading to

Theorem 15.2.15 (i) stating that is CR, in the notation used there. That proof

includes -reduction which is not considered in this paper. Barendregt’s proof uses

“Postponement of -reductions”. Another proof, using “Finite Developments”, is in

Barendregt, Bergstra, Klop, and Volken [1976). This proof is here included in

Appendix 9.2. 

Sequentiality in theLambda Calculus
7

8/27/56

18.2 Böhm trees 319

BT (M) =
�
{ω(N)|M � N}

Here
�

denotes the supremum (lub) in the cpo (Ter∞(λΩ),�ω). In general the

Böhm trees are infinite terms, in this setting perceived as elements of the ideal

completion (see p.378 Curien [93]). All this is classical theory. Mention that the

stable part ω(N) is growing along a reduction, hence by CR every two ω(N)’s
have an upper bound (are consistent), hence the whole set has an upperbound

(what is definition directed?) hence the lub exists. include directed/include ex-

amples

(iii) Infinitary rewriting
We will introduce BT’s somewhat differently, adopting the framework of infini-

tary λ -calculus (λ ∞
-calculus). We generate BT’s by the following rules in Table

1.

(λx.Z(x))Z� → Z(Z�) (β )
M → Ω if M �= Ω is unsolvable (uns)

ΩM → Ω (Ωl)

λx.Ω → Ω (Ωd)

TABLExx Böhm Reduction

Theorem 18.2. Böhm reduction is confluent.

Proof. A proof of this fact can be found in Barendregt [84], p.384-391, leading to

Theorem 15.2.15 (i) stating that βΩ is CR, in the notation used there. That proof in-

cludes η-reduction. Barendregts proof uses Postponement of Ω -reductions. Another

proof, using Finite Developments, is in Barendregt, Bergstra, Klop, and Volken

[1976). ��

Remark 18.1. BT’s as in Barendregt [84] are written in Baire space, with as universe

the set Seq (= N*) of sequence numbers σ , . . .. At each ’field’ or position σ in this

space, the data that can be written there have the form λx.y where x = x1 . . .xn(n ≥
0) and y ∈ Var, or Ω . This representation is quite different from the one used in

infinitary lambda calculus, λ ∞
-calculus, where the underlying space is the ternary

branching space with as set of positions {d, l,r}∗ (down, left, right) and where data

are @,λx,x, or Ω . (This is also done in Curien’s definition of BT’s as concrete data

structures. See Curien [93], p.166.)

Figure 5 gives an example of a (finite) term written in both representation for-

mats. Figure 6 depicts the BT of the Y-combinator of Curry in both formats. We

will call the two notation styles: applicative notation and hnf notation. They are es-

sentially different because only terms without redexes (so finite or infinite normal

forms) can be written in hnf notation. So the hnf notation is especially suitable for

BT’s, but not for general (finite or infinite) terms.

figure to be inserted.

Modulo unsolvables: 

$(% ! CR



In Barendregt 84: section 15.2, 8 pages

Blue preprint 1976, Barendregt, Bergstra, Klop, Volken:
youth sentiment and contortuous casuistics

later question:
$∞(*% ! CR∞

$(*% ! CR
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redex, outermost among the redexes of which a descendant is contracted in γi, and

define γi+1 = γi/τi (that is, the projection of γi over τi). It can be shown that the thus

constructed reduction τ is strongly converging and has the same limit as γ0. (In the

case of a divergent sequence γ0, τ also is divergent.) For more details, we refer to

Ketema [Ket12].

ωω Iωω I2ωω I3ωω Iω ω

Iω (Iω)

Iω (I2ω)

Iω (I3ω)

Iω (Iω)

ω(Iω)

ω(I2ω)

ω(I3ω)

Iω(Iω)

Iω(I2ω)

Iω(I3ω)

I2ω(Iω)

I2ω(I2ω)

I2ω(I3ω)

I3ω(Iω)

I3ω(I2ω)

I3ω(I3ω)

ω(Iω) Iω(Iω) I2ω(Iω) I3ω(Iω)

Fig. 15.7: Infinitary reduction graph of the term SII(SII), not a closed graph.
The red reduction steps are root steps. All infinite reductions in this graph are
divergent. The accumulation or limit points in the euclidean metric, as well as
in the tree metric, at the east and south side, are themselves not ��-reducts,
hence not contained in this ��-graph..

Example 15.4. The CL-term SII(SII) has the infinite reduction graph displayed in

Figure 15.7. Abbreviating ω = SII the terms at the nodes of this graph are Inω(Imω)
for n,m ≥ 0. Here are some observations:

(i) All the terms in this reduction graph are root-active, but not hypercollapsing.

(ii) There are continuum many infinite reductions contained in this reduction graph;

all are divergent; in particular they are root-active.



solvable termssolvable terms

unsolvable termsunsolvable terms

I

λx.xx

λyx.yxx

order 0 Ω
order 1 λx.Ω

...

order ∞ YK≡ λx1x2x4 . . . .

Statman 1978

instead of MA      ( N, write M   !  N 

! 

""
! 

"" A

M   !  N: M is more solvable than N.

Every countable poset is 
embeddable in poset of unsolvables



� root

�� root

�� lazy � lazy

��head �head

��spine �spine

ΩBeT (mute terms, no root stable form)

ΩLLT (no weak head normal form)

ΩBT (no head normal form, unsolvables)

⊆
⊆

=

⊆

=

=

= =

=

=

=

head normalization theorems
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F(0) P

0           F

S

0

P

P

P

P

0

S

0 S

S

0

.....

Limit: infinite sequence of natural numbers

F(x) " P(x, F(S(x)))
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F(x) " P(x, F(S(x)))

P

F F

0 0

P

F

0

P
P
P
P
P

0
S
0 S
S
0

P
P
P
P
P

0
S
0 S
S
0

P
P
P
P
P

0
S
0 S
S
0

P! !

Transfinite reduction sequence of length ! + !



30 2 Preliminaries: some tools of the trade

α.0 = 0

α.β+ = (α.β )+α

α +λ =
�

µ<λ
(α.µ) if Lim(λ )

(iii) Power:

α0 = 1

αβ+
= (αβ ).α

αλ =
�

0<µ<λ
(αµ) if Lim(λ )

Example 2.3. (i) Note that 1+ω = ω �= ω +1.
(ii) Also product is not commutative: 2.ω = ω �= ω.2 = ω +ω.

(iii) 2ω = 3ω = ω .

Fig. 2.16: Beanstalk representation of the ordinal ω2.

Fig. 2.17: The ordinal ω3.

Exercise 2.11. (Albert Visser). Often one draws ordinals as ’dot diagrams’, see
Benedikt Löwe, Visualizations of ordinals, or telephone poles (Conway and Guy,
The book of numbers, or matchstick figure David Magore, wikipedia. As such dot
diagrams of ordinals suggest, some ordinals can be mapped (embedded) into the
segment of real numbers [0,1] in an order-preserving way.

Given that there are uncountably many real numbers in [0,1], one might think
that there is also room for embedding some uncountable ordinals in [0,1]. However:
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Fig. 2.16: Beanstalk representation of the ordinal ω2.

Fig. 2.17: The ordinal ω3.

Exercise 2.11. (Albert Visser). Often one draws ordinals as ’dot diagrams’, see
Benedikt Löwe, Visualizations of ordinals, or telephone poles (Conway and Guy,
The book of numbers, or matchstick figure David Magore, wikipedia. As such dot
diagrams of ordinals suggest, some ordinals can be mapped (embedded) into the
segment of real numbers [0,1] in an order-preserving way.

Given that there are uncountably many real numbers in [0,1], one might think
that there is also room for embedding some uncountable ordinals in [0,1]. However:
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Cauchy converging reduction sequence: activity may occur everywhere

Strongly converging reduction sequence, with descendant relations

difference between CC and SC: looping terms
Kennaway-de Vries 1992; De Vrijer, Grabmayer, Endrullis, Hendriks, Simonsen 2012
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ω ·1 ω ·2 ω ·3 ω ·4 ω ·5 ω ·6 ω ·7 ω ·8 ω ·9 ω ·10 ω ·11 ω ·12 ω ·13ω ·14ω ·15ω ·16ω ·17ω ·18ω ·19

0 ω2

convergence of depths towards ω2

Fig. 15.1: Depth of redex contractions tends to infinity at each limit ordinal.

The sequence is called strongly convergent if the conditions (i) and (ii) are fulfilled
for every limit ordinal λ ≤ α . In this case we write t0 ��T tα , or t0 →α tα to ex-
plicitly indicate the length α of the sequence.

There are several reasons why strong convergence is beneficial; the foremost
being that in this way we can define the notion of descendant (in the past also called
residual) over limit ordinals. Also the well-known Parallel Moves Lemma and the
Compression Lemma fail for weak convergence. It is further easy to establish that
strongly convergent reductions can have any countable length; weakly convergent
reductions can have any length, as the one-rule TRS with C →C demonstrates.

The notion of normal form, which now may be an infinite term, is unproblematic:
it is a term without a redex occurrence.

! t0 t1 t" t"+1

!’

t"+"

t’0 t’1 t’2 t’" t’"+1 t’"+"

p0 p1 p2
|| || || || || || ||

s0 s1 s"

p" p"+"

Fig. 15.2: Parallel Moves Lemma.

Example 15.1 (Zero times infinity). Let us discuss all the concepts introduced so far
by means of the following reduction rules for addition and multiplication due to

strong convergence: redex depth to infinity



Finitary rewriting Infinitary or transfinite rewriting

finite reduction strongly convergent reduction

infinite reduction divergent reduction (“stagnating”)

normal form possibly infinite normal form

CR: two coinitial finite reductions can
be prolonged to a common term

CR∞: two coinitial strongly conver-
gent reductions can be prolonged by
strongly convergent reductions to a
common term

UN: two coinitial reductions ending in
normals forms, end in the same normal
form

UN∞: two coinitial strongly conver-
gent reductions ending in (possibly in-
finite) normal forms, end in the same
normal form

SN: all reductions lead eventually to a
normal form

SN∞: all reductions lead eventually to
a possibly infinite normal form, equiv-
alently: there is no divergent reduction

WN: there is a finite reduction to a
normal form

WN∞: there is a strongly convergent
reduction to a possibly infinite normal
form

Table 1: The main properties in finite and infinitary rewriting.

Example 2.3. Consider the orthogonal TRS with the three rules

A(x) → x B(x) → x C → A(B(C))

The first two rules are so-called collapsing rules, by virtue of their right-hand

side being a single variable. Now we have reductions C →→→ Aω
and C →→→ Bω

.

Figure 3 depicts the tiling diagram for these reductions. However, the infinite

terms Aω, Bω
only reduce to themselves; hence CR

∞
fails.

Example 2.4. The ‘ABC-example’ that we saw in the preced-

ing example also works in the much more important rewrite

system Combinatory Logic CL, with the usual three basic

combinators I,K, S and their corresponding reductions rules

(see, e.g., Barendregt [2]), and also in infinitary λ-calculus
that we will consider in more detail in the next section. The

figure on the right, with the infinite collapsing tower of two

different collapsing contexts K�K and K�S shows how the

ABC-counterexample can be simulated using a fixed-point

construction in those calculi. To see that this is indeed a CR
∞
-

counterexample, note that µx.K(KxS)K →→→ µx.KxS and also

µx.K(KxS)K →→→ µx.KxK, while µx.KxS and µx.KxK only re-

duce to themselves (in any countable ordinal number of steps,

by the way).

K

K

K

K

K

K

K
K
K ...

K
S

K

S

K

S

K

S

K

7
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∞

M

A

∞

M

A ∞ A

∞

M(0,∞)

M(0,S(∞))

M(0,S(S(∞)))

M(0,Sω) A(M(0,Sω),0)

A(M(0,∞),0)

A(A(M(0,∞),0),0)

µx.A(x,0)

A

A

A

A
A

A
A

A
A

A
0

0
0

0
0

0
0

0

0

0

Fig. 15.3: Zero times infinity..

a marker indicating activity; next the connection with reduction loops is shown.
Consider the following abbreviations:

CC: Cauchy convergence, informally defined above;
SC: Strong convergence, also defined above;

CCC: Cauchy convergence with colors, explained below.

Given is the first-order signature Σ and a TRS (Σ ,R). We extend this signature by
adding a colored ‘activity marker’ α , a unary symbol with the reduction rule

α(x)→ x

The old reduction rules are changed in such a way that the right-hand side is prefixed
with α . For example, for Combinatory Logic (CL) this gives the following rules for
S and I:

Ix → α(x) Sxyz → α(xz(yz))

The resulting TRS is �Σ �,R��. Now given an old reduction in �Σ ,R�, we can lift it
to the colored version �Σ �,R�� by applying the rules as modified, introducing the
markers α . The markers are removed the next step using the α-rule (intuitively, the
heat generated by the activity ‘cools down’).

We now define Cauchy convergence with colors (CCC) of a rewrite sequence in
the original system �Σ ,R� as Cauchy convergence of the lifted rewrite sequence in
�Σ �,R��. So the infinite reduction in CL:

A(x, 0)" x
A(x, S(y)) " S(A(x, y))
M(x, 0) " 0
M(x, S(y)) " A(M(x, y), x)
+  " S(+)

zero times infinity
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ω ·1 ω ·2 ω ·3 ω ·4 ω ·5 ω ·6 ω ·7 ω ·8 ω ·9 ω ·10 ω ·11 ω ·12 ω ·13ω ·14ω ·15ω ·16ω ·17ω ·18ω ·19

0 ω2

convergence of depths towards ω2

Fig. 15.1: Depth of redex contractions tends to infinity at each limit ordinal.

The sequence is called strongly convergent if the conditions (i) and (ii) are fulfilled
for every limit ordinal λ ≤ α . In this case we write t0 ��T tα , or t0 →α tα to ex-
plicitly indicate the length α of the sequence.

There are several reasons why strong convergence is beneficial; the foremost
being that in this way we can define the notion of descendant (in the past also called
residual) over limit ordinals. Also the well-known Parallel Moves Lemma and the
Compression Lemma fail for weak convergence. It is further easy to establish that
strongly convergent reductions can have any countable length; weakly convergent
reductions can have any length, as the one-rule TRS with C →C demonstrates.

The notion of normal form, which now may be an infinite term, is unproblematic:
it is a term without a redex occurrence.

! t0 t1 t" t"+1

!’

t"+"

t’0 t’1 t’2 t’" t’"+1 t’"+"

p0 p1 p2
|| || || || || || ||

s0 s1 s"

p" p"+"

Fig. 15.2: Parallel Moves Lemma.

Example 15.1 (Zero times infinity). Let us discuss all the concepts introduced so far
by means of the following reduction rules for addition and multiplication due to
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A(x)          x
B(x)          x
C              A(B(C))!

!
!

C

A(B(C))

A(C)                      B(C)

A(A(B(C)))           B(A(B(C)))

A(A(C))                 B(B(C))

A(A(A(B(C))))      B(B(A(B(C))))

A(A(A(C)))           B(B(B(C)))

A                            B

"

" "

" "

" "

""

""

......

......

# #

C

ABC

ABABC

ABABABC

ABABABABAB...

A                           B# #

"

"

"

"

...

##

(a) (b)

Failure of infinitary confluence

not CR+
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Sxyz         xz(yz)
Kxy          x

!

!

!
!

@(@(@(S, x), y), z)      @(@(x, z), @(y, z))
@(@(K, x), y)                x

@

@          K

K

@

@          S

K

@

@          K

K @

@          S

K @

@          K

K @

@          S

K @

@

@          S

K @

@          S

K @

@          S

K @

@          S

K @

@

@          K

K @

@          K

K @

@          K

K @

@          K

K @

" "

collapsing contexts

Failure of infinitary confluence for Combinatory Logic



A(x) ! x
B(x) ! x
C ! A(B(C))

"
Failure 
of CR

37
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A(x)→ x B(x)→ x C → A(B(C))

The first two rules are so-called collapsing rules, by virtue of their right-hand side

being a single variable. Now we have reductions C �� Aω
and C �� Bω

. Figure 15.4

depicts the tiling diagram for these reductions. However, the infinite terms Aω ,Bω

only reduce to themselves; hence CR
∞

fails.

We note that both terms are reduction loops, i.e. reduction cycles of length one.

This is not a coincidence. We will see later that any term t that is not CR
∞

, must be

’close to’ a looping term; in fact it must have a looping term in its family, defined as

the set of subterms of the reducts.

C

ABC

BC

BABC

BBC

BBABC
BBBC

BBBABC
BBBBC

BBBBABC
BBBBBC

BBBBBABC
BBBBBBCBBBBBBABCBBBBBBBCBBBBBBBABCBBBBBBBBC

ABC

AC

AABC

AAC

AAABC
AAAC

AAAABC
AAAAC

AAAAABC
AAAAAC

AAAAAABC
AAAAAACAAAAAAABCAAAAAAACAAAAAAAABCAAAAAAAAC

BC

BABC

BBC

AC

AABC

AAC

ABC

C

ABC

C

Fig. 15.4: The ABC-example (Example 15.2), in perspective. The reduction
graph is rendered such that the distances in the euclidean metric of the plane
respect the tree metric..

ABC-counterexample in perspective:
euclidean distance = tree distance
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Finitary rewriting Infinitary or transfinite rewriting

finite reduction strongly convergent reduction

infinite reduction divergent reduction (“stagnating”)

normal form possibly infinite normal form

CR: two coinitial finite reductions can
be prolonged to a common term

CR∞: two coinitial strongly conver-
gent reductions can be prolonged by
strongly convergent reductions to a
common term

UN: two coinitial reductions ending in
normals forms, end in the same normal
form

UN∞: two coinitial strongly conver-
gent reductions ending in (possibly in-
finite) normal forms, end in the same
normal form

SN: all reductions lead eventually to a
normal form

SN∞: all reductions lead eventually to
a possibly infinite normal form, equiv-
alently: there is no divergent reduction

WN: there is a finite reduction to a
normal form

WN∞: there is a strongly convergent
reduction to a possibly infinite normal
form

Table 1: The main properties in finite and infinitary rewriting.

Example 2.3. Consider the orthogonal TRS with the three rules

A(x) → x B(x) → x C → A(B(C))

The first two rules are so-called collapsing rules, by virtue of their right-hand

side being a single variable. Now we have reductions C →→→ Aω
and C →→→ Bω

.

Figure 3 depicts the tiling diagram for these reductions. However, the infinite

terms Aω, Bω
only reduce to themselves; hence CR

∞
fails.

Example 2.4. The ‘ABC-example’ that we saw in the preced-

ing example also works in the much more important rewrite

system Combinatory Logic CL, with the usual three basic

combinators I,K, S and their corresponding reductions rules

(see, e.g., Barendregt [2]), and also in infinitary λ-calculus
that we will consider in more detail in the next section. The

figure on the right, with the infinite collapsing tower of two

different collapsing contexts K�K and K�S shows how the

ABC-counterexample can be simulated using a fixed-point

construction in those calculi. To see that this is indeed a CR
∞
-

counterexample, note that µx.K(KxS)K →→→ µx.KxS and also

µx.K(KxS)K →→→ µx.KxK, while µx.KxS and µx.KxK only re-

duce to themselves (in any countable ordinal number of steps,

by the way).
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Ketema-Simonsen, with UN∞ as corollary
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Ter∞(Σ)

Iω

Ω

divergent
root active

hypercollapsing

alternatingly
hypercollapsing

CR∞

WN∞

SN∞

NF

UN∞

bad good

Fam(t)
t

Fig. 15.5: Root-active and hypercollapsing terms..

Unique infinitary normal forms

Even though CR
∞

fails, fortunately its consequence UN
∞

does hold. Caveat:
Here it is important that we have orthogonal TRSs; for weakly orthogonal ones,

also UN
∞

fails, as we will see later.

Let us point out a notable consequence of UN
∞

: for all orthogonal TRSs we have

SN
∞ ⇒ CR

∞
, because SN

∞
& UN

∞ ⇒ CR
∞

. And note that we also have the local

version for all terms, i.e., ∀t.SN
∞(t) ⇒ CR

∞(t).

Infinitary normalization

As to infinitary normalization, there are two noteworthy remarks.

(i) The first pertains to the definition of SN
∞

, stating that all reductions eventually

will normalize, i.e., reach a normal form. It is important to realize what the

negation of this property means: it means that there is a depth n where infinitely

many times a redex is contracted. Such a ‘stagnation’ reveals that the reduction

is not strongly convergent, which we call divergent. So we can rephrase SN
∞

as

stating: there are no divergent reductions.

(ii) The second remark is that in finitary rewriting the properties SN and WN as

global properties of TRSs have a different strength: SN ⇒ WN but not vice

versa. However, in infinitary rewriting (with orthogonal TRSs), we have some-

what surprisingly the equivalence SN
∞ ⇔ WN

∞
. Caveat: This is so for the

global properties SN
∞

and WN
∞

; on the term level the properties do have dif-

ferent strength, SN
∞(t) implies WN

∞(t), but not necessarily vice versa. For an

exposition of these facts see [KdV05].

15.2 Infinitary properties of transfinite term rewriting 273

Example 15.3. The ‘ABC-example’ that we saw in the preced-

ing example also works in the much more important rewrite sys-

tem Combinatory Logic CL, with the usual three basic combi-

nators I,K,S and their corresponding reductions rules (see, e.g.,

Barendregt [Bar84]), and also in infinitary λ -calculus that we will

consider in more detail in the next section. The figure on the

right, with the infinite collapsing tower of two different collaps-
ing contexts K�K and K�S shows how the ABC-counterexample

can be simulated using a fixed-point construction in those cal-

culi. To see that this is indeed a CR
∞

-counterexample, note

that µx.K(KxS)K�� µx.KxS and also µx.K(KxS)K �� µx.KxK,

while µx.KxS and µx.KxK only reduce to themselves (in any

countable ordinal number of steps, by the way).

K

K

K

K

K

K

K
K
K ...

K
S

K

S

K

S

K

S

K

Remark 15.2. The counterexample µx.K(KxS)K against CR
∞

gives us a hint as to

what is the cause of the failure of CR
∞

. First, let us remind the definition of root-
active term: this is a term admitting an infinite reduction in which infinitely often the

root redex is contracted (so that is the whole term). Root-active terms are ‘problem-

atic’, they can be considered as ‘undefined’: they never will reduce to a term where

the root is stable and not subject to any further reduction. Indeed, working modulo

the set RA of root-active terms, we restore CR
∞

. Now RA contains a subset HC of

hypercollapsing terms that is even more problematic or undefined. A hypercollaps-

ing term is one that reduces to an infinite tower of stacked collapsing contexts. A

context C is collapsing when C[x] � x. The last step of such a collapsing reduc-

tion is by virtue of a collapsing reduction rule t → x, with a variable as right-hand

side. Thus without loss of generality we may assume that all contexts C a collapsing

tower is built of, collapse in a single step.

The notion CR
∞

is fairly robust: only the hypercollapsing terms cause non-CR
∞

.

Even the root-active but not hypercollapsing terms do not disturb CR
∞

. We can

make this precise using the notion of family of a term t, Fam(t) which is the set

of all subterms of all reducts of t. The term t and its family Fam(t) are shown in

Figure ??.

Now we have the following theorem:

Theorem 15.1. For all terms t in an orthogonal TRS, we have

Fam(t)∩HC =∅ ⇒ CR
∞(t)

We conjecture that Theorem 15.1 can be sharpened by introducing a class of al-
ternating hypercollapsing terms, reducing to an infinite alternating tower of two

‘essentially’ non-convertible collapsing contexts, like the term µx.K(KxS)K.
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For infinitary lambda calculus
Parallel Moves Lemma PML+ 

fails, hence also CR+
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!! !!!!!!
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I# !

#I ! ($x.I(xx)
# ! $x.xx

YI " #I #I



another counterexample

Z

Let M ≡ λx.Kxw and Z = Y M. Then

MZ KZw

Y I K

K

K

K

K ...

w

w

w

w

w

curious: in the limit, w is 
fixed as a free variable, 
all reducts are open terms

all reducts are closed terms



BYSI BYI 

BY BYS≠( ?

≠( !

BYI ! ($abc.a(bc)) YI 

$c.Y(Ic)

$c.Yc  

Y  

Curry’s fpc

BYSI ! ($abc.a(bc))YSI 

Y(SI)

Turing’s fpc

A simple proof

45



Y0:   #f. (x.f(xx)(#x.f(xx))

Y1:   (#ab. b(aab)) (#ab. b(aab))

Y0(SI)         Y1

! 

""

Exercise. Prove that Y0  ≠( Y1



infinitary lambda calculus subsumes scott’s 
induction rule

Yx"" x(Yx)   " "  x2 (Yx) "#  x# ! x(x(x(x...

BY ! ($abc.a(bc)) Y BYS ! ($abc.a(bc)) YS 

$bc.Y(bc) 

$bc. (bc)# ! $cz. (cz)# 

#

$c.Y(Sc) 

$c. Sc(Y(Sc)) 

$cz. cz(Y(Sc)z) 
$cz. cz(cz(Y(Sc)z)) #

=+

≠(
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At this point in our introduction, we would have reduction sequences of every ordinal length α, e.g. forM0 ≡ " wewould
have

M0 ≡ " →β " →β . . . Mω ≡ " →β " →β . . . " ≡ Mα .

However, in addition to Cauchy convergence we impose a crucial further requirement on the limit behaviour of reduction
sequences: when approaching a limit λ, the depth dγ of the contracted redex rγ in step Mγ →β Mγ+1 must tend to infinity:
limγ<λdγ = ∞. Here the depth of a redex r inM ∈ '∞(⊥) is the number of steps (edges) in the term tree ofM from the root to r.
Nowour reduction sequence in spe" → " → . . . "of arbitrary lengthα is not allowed, since there the contracted redexdepth
stays at level 0, and is not going down at each limit λ; the action is ‘stagnating’ at level 0. Reduction sequences satisfying our
crucial redex-depth-to-infinity requirement, are called strongly convergent. The point of the redex depth requirement, i.e. of
strong convergence, is that it entails a natural notion of ‘descendant’ or ‘residual’ carrying over to transfinite reductions, and
the notion of descendant is a backbone of the theory of orthogonal rewriting, including λ-calculus. Actually, our definition
above is in fact redundant, since the redex depth requirement already implies Cauchy convergence. It is not hard to see that
strongly convergent reductions can have atmost a countable ordinal as length; if not, wewould have some level at which the
action (redex contraction) would stagnate forever—but the depth requirement prohibits that. Reductions that are stagnating
at some finite level, i.e. that are not strongly convergent, are called divergent. There is a helpful analogy between finitary
reductions and infinitary (transfinite) reductions: in the former we have finite versus infinite reductions, to be compared
with, in the latter, strongly convergent versus divergent reductions.

Notation 2.12 (Infinitary β-reduction and conversion). (i) Let M, N be terms in '∞(⊥) and suppose that there is a transfinite
strongly convergent R-reduction from M to N. Then we write

M →→→R N.

(i) M −→α
R N (respectivelyM −→!α

R N,M −→<α
R N) denotes that there is a strongly convergent infinitary R-reduction from

M to N with length α (respectively !α, <α).

(ii) =R∞ is the infinitary conversion relation corresponding to →→→R. In fact =R∞ is (R←←← ◦ →→→R)
*, where ‘◦’ denotes relational

composition and * transitive closure.

Definition 2.13. (i) A term M ∈ '∞ is in β-normal form (β-nf) if it does not contain a β-redex.
(ii) M has a β∞-nf ifM →→→β N and N is in β-nf.
(iii) '∞

NF = {M ∈ '∞ | M is in β-nf}.

Example 2.14 (An infinite fixed point combinator). In this example and the next we will present some brief excursions in the
infinitary λ-calculus as introduced up to now. Next to illustrating the notions defined above, we also aim in these two
examples to suggest the convenience of having available the additional infinitary domain for computations, and moreover
that this leads to some observations thatmay be of interest on their own. In the present examplewewill encounter an infinite
fixed point combinator (fpc). Using the notations for S, I, Y above, consider δ ≡ λab.b(ab). Note that δ = SI. The following is
an observation of C. Böhm and G. van der Mey: if Y is a ‘reducing fpc’, i.e. Yx →→β x(Yx) for a variable x, then Yδ is again a
reducing fpc. Indeed, we have

Yδx →→β δ(Yδ)x →→β x(Yδx) →→β xn(Yδx).

Now let us perform this reduction in an infinitary way, in ω + ω steps:

Yδx →→→β (λf .f ω)δx →β δωx ≡ δ(δω)x →→β x(δωx) →→→β xω.

Hence Yδ is indeed behaving as a fpc, and we have Yδ =β∞ λx.xω =β∞ Y .

Starting with the fpc Y, define the Böhm-van der Mey sequence Y0 = Y , Y (n+1) = Ynδ. Then each Yn is a fpc.
Note that the above reduction of length ω.2 could have been ‘compressed’ to one of length ω between the same terms

Yδx and xω , but the resulting reduction would be less natural and informative.
In fact the infinite term δω ≡ δ(δω) is itself already a reducing fpc, as the reduction above shows, and we also have

δω =β∞ λx.xω =β∞ Y . So we have encountered a new infinite fpc, δω , or in µ-notation: µx.δx. As an illustration of the richness
of the infinitary domain, '∞(⊥), we mention that one can find many more infinite fpcs, e.g., for every n the infinite term
(SS)ωS∼nI is a fpc. Here S∼n denotes a string of n occurrences of S’s, with brackets associated to the left; thus for n = 3 we
have (SS)ωSSSI. The simple verification is left to the reader or can be found in Klop [33].

Example 2.15 (The equation B YS = B Y and Scott’s Induction Rule). In Scott [38, p. 20], the following principle (Scott’s In-
duction Rule) was introduced.

), ax * bx + a(ux) * b(ux)
,

), a⊥ * b⊥ + a(Yu) * b(Yu)



playing with infinite lambda terms: 
infinite fixed point combinators

µx.xx

((∆ω)ω)ω

(∆ω)ω

∆ω

∆

δ

∆∆

µx.xx

((∆ω)ω)ω

(∆ω)ω

∆ω

∆

δ

∆∆

term graph edges

infinitary rewriting

Figure 8: Cyclic graphs for some reducts of ∆∆, getting more and more complex but
converging to the relatively simple normal form consisting of application nodes only.
All the ‘fuel’ initially present in the form of the δ’s, has been burnt out in the normal
form.

(v) ∆∆ is an interesting term. We have

∆∆ →→→ ∆ω →→→ (∆ω)ω →→→ ((∆ω)ω)ω →→→ · · ·

See Figure 8. Somewhat surprisingly, ∆∆ does have a normal form, viz.
µx.xx; and moreover ∆∆ has the property SN∞. To see that µx.xx is
indeed the normal form, one may consider the reduction

∆∆ →→→ (∆ω)ω ≡ ∆ω((∆ω)ω) →→→ (∆ω)ω((∆ω)ω) →→→ · · ·

and check that the reductions involved do not employ root redexes. (Only
in the reduction∆∆ →→→ ∆ω a root step is present; in the ‘later’ reductions
there are no root steps.) In fact we have a strongly convergent reduction

∆∆ →→→ ∆ω →→→ (∆ω)ω →→→ ((∆ω)ω)ω →→→ · · · →→→ µx.xx

(vi) The term ∆∆ has uncountably many reducts. It has reductions of any
countable ordinal length. It is SN∞ with µx.xx as its unique normal form.
This normal form is in fact a Berarducci tree. The example of ∆∆ was
also mentioned in [4]. SN∞ can be proved as follows: We have CR∞ as
there are no collapsing rules in this TRS, which is a fragment (sub-TRS)
of CL. Since there is a normal form, we have WN∞. Hence, SN∞ follows
by the equivalence SN∞ ⇐⇒ WN∞ as global properties of TRSs.

2.4. Continuity of infinitary rewriting
Experimenting with several infinitary reduction graphs, we observe that they

seem to have a certain closure property, or rather, continuity property. We will
make this explicit now.

14

twinkle = ' = &# = &(&(&(& ...
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µx.xx

((∆ω)ω)ω

(∆ω)ω

∆ω

∆

δ

∆∆

µx.xx

((∆ω)ω)ω

(∆ω)ω

∆ω

∆

δ

∆∆

term graph edges

infinitary rewriting

Fig. 15.9: Cyclic graphs for some reducts of ∆∆ , getting more and more com-
plex but converging to the relatively simple normal form consisting of appli-
cation nodes only. All the ‘fuel’ initially present in the form of the δ ’s, has
been burnt out in the normal form. .

c -> b(c)
b(c) -> a(d)
b(a(x)) -> a(a(x))

c

bc

bbc

bbbc

b^omega

ad

aad

a^omega

bad

bbad

baad

Fig. 15.10: Lack of continuity.

(SS)$SSSI, another infinite fpc

13.3. Böhm Trees 9

(i) Consider the ARS A = �Nω,→� with as domain the set of streams
of natural numbers, and reduction relation → consisting of the op-
eration of adding two consecutive entries in the stream. Now it is
easy to see that the element 1ω is not CR∞, as it reduces infinitarily
to both 2ω and 12ω, two streams that have no common →→→-reduct.
It is easy to see that the reduction graph of the infinite λ-term in
Figure 13.4 is in fact isomorphic to the reduction graph G(1ω) in
this ARS A.

(ii) Now we consider the ARS A = �(N)ω,→� consisting of the streams
of extended natural numbers N = N ∪ {∞}. The reduction relation
is again the addition of two consecutive stream entries, now with
the understanding that n + ∞ = ∞ + n = ∞. Now consider the
stream ∞111 . . ., corresponding in fact to the infinite looping term
in Figure 13.3. Also the reduction graph of this looping term is
isomorphic to that of the stream as mentioned. That it is non-CR∞

is a nice puzzle.

13.2.7 Computing in λ∞β-calculus: two examples

In the first example we will deal with infinitary fixed point combinators.
We abbreviate δ ≡ λab.b(ab). This term δ is important, as every (finite)
fixed point combinator (fpc) is a fixed point of δ and vice versa. Taking
the infinite iteration ∆ ≡ δω we have an infinitary fpc:

∆x ≡ δ∆x →β→β x(∆x)

There are many more interesting infinitary fpc’s, among them the infinite
terms (SS)ωS∼nI for n ≥ 1 Todo: improve sim. We leave the one line verifica-
tion to the reader.

13.3 Böhm Trees

13.3.1 Potential Böhm Trees

Todo: Barendregt’s characterization of infinite λ-trees that are representable by finite λ-terms, both

in λK-calculus and λI-calculus. For the first it is as one expects, but for the second, one needs an

extra condition, namely a partial recursive variable indicator. This takes 2 pages in Henk’s boek,

but Joerg mistrusts the statement and wants to check it. Anyway, we must only remark on this

here.
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Proof. Let Y0 = λf.ωfωf with ωf = λx.f(xx) and consider Y0I. Then on

the one hand Y0I →β (λx.I(xx))(λx.I(xx)) →→→ Iω, and on the other hand

Y0I →β (λx.I(xx))(λx.I(xx)) →2
β Ω = (λx.xx)(λx.xx). Both Iω and Ω re-

duce only to themselves, so they have no common reduct.

In fact, the terms Iω and Ω in the proof above are examples of an in-

teresting class of terms that we will consider in the following subsection.

Having seen that some important confluence properties fail, we now

mention the validity of infinitary unique normal form properties.

Theorem 13.2.5 ([15]). The infinitary β-reduction →→→β has the infinitary nor-

mal form property NF
∞, that is, for all M,N ∈ Ter∞(λ) with N a normal

form and M ( →→→β∪ →→→β)∗ N we have M →→→β N. In a picture:

M N a normal form∗

Actually the following property is sufficient:

M N a normal form

L

We obtain infinitary unique normal forms UN
∞

as a direct corollary.

13.2.6 Looping λ-terms

There is an interesting matter to be mentioned when we consider the

difference between merely Cauchy converging and strongly converging

reductions: the looping λ-terms. A looping term simply is a term M such

that M →β M. It turns out that every weakly convergent reduction,

that is not strongly convergent, contains a looping term. This was first

noted in Kennaway et al. [10] for the case of first-order term rewriting,

and subsequently made precise and generalized in Simonsen [23] and

Endrullis, Grabmayer, de Vrijer [6].

It is a very interesting combinatorial problem to determine all infinite

λ-terms that are looping, in one β-step. For the finite λβ-calculus, the

only looping terms are terms which have Ω as a subterm, see Lercher [16].

For the infinitary λβ-calculus, it is non-trivial to characterize the loop-

ing terms. This characterization has been found by Endrullis and Polon-

sky [8]. Here we follow the presentation in [7, Section 3].
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λx1

λx2

λx3

λx4

a x3

a x2

a x1

aω

β

Fig. 17.3: An infinite looping λ -term..

λx2

λx4

λx6 S2(x4)

S2(x2)

S2(x0)

λx1

λx2

λx3 S(x2)

S(x1)

S(x0)

λx1

λx3

λx5 S2(x3)

S2(x1)

S1(x0)

λx1, λx3, λx5,. . . λx2, λx4, λx6,. . .

Fig. 17.4: Another counterexample to CR∞ of λ ∞β -calculus..

Example 17.2. Now we consider the ARS A = �(N)ω ,→� consisting of the streams
of extended natural numbers N = N∪ {∞}. The reduction relation is again the ad-
dition of two consecutive stream entries, now with the understanding that n+∞ =
∞+ n = ∞. Now consider the stream ∞111 . . ., corresponding in fact to the infinite
looping term in Figure 17.3. Also the reduction graph of this looping term is isomor-
phic to that of the stream as mentioned. That it is non-CR∞ is a nice and nontrivial
exercise, left to the reader.

Todo: The following figure has still to be described and motivated in the text.

playing with infinite lambda terms: 
looping lambda terms

!

t0"v0

"v1

"v2

"v3

t1

t2

t3

!

!

looping term with infinite spine (red) and cascade projective sequence,
with projection ! .



13.2. The framework of infinitary λ-calculus 7

Obviously we have:

(i) If M →p M at position p, then M|p is looping.

(ii) If M is looping, then any term C[M] is.

and therefore the interesting cases are the terms that loop via a root step;

we call these root-looping terms.

Theorem 13.2.6. In infinitary λ-calculus, a term is root looping if and only if
it is of one of the following forms:

(i) Ω

(ii) Iω

(iii) BB where B is the infinite solution of B = λx.xB,

(iv) (λv0.(λv1.(λv2....)t2)t1)t0 such that ti is obtained from ti+1 by replacing
v0 by t0 and all variables vj+1 by vj. We call such a term a cascade.

λv0

λv1

λv2

λx4 t3

t2

t1

t0

π

π

π

Figure 13.2: The shape of cascades; here π stands for replacing all variables vj by
vj+1 followed by replacing an arbitrary (possibly infinite) number of occurrences
of t0 by v0.

Note that item iv is an infinite scheme of looping λ-terms, illustrated

in Figure 13.2. An example of a looping term is depicted in Figure 13.3.

For the first-order case we have a complete characterization of what

causes the failure of CR
∞

for orthogonal TRSs. It is due to the presence of

either two collapsing rules, as in the ABC-counterexample (Example ??),

or to the presence of a parameterized collapsing rule like Kxy → x in CL

(Example ??), see [12, Theorem 6.10].
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λx

λy

λ z

x

001-depth 1
{l,d}-steps don’t count

λx

λy

λ z

x

101-depth 4
{l}-steps don’t count

λx

λy

λ z

x

111-depth 7
all steps count

Fig. 18.2: Depth count of an occurrence of x in the three paradigm semantics..

tree family BT LLT BeT

dimensions d,�,r 001 101 111

domain Ter(λd�r) Ter(λ001)⊆ Ter(λ101)⊆ Ter(λ111)

strategic redex spine ⇐ head ⇐ lazy ⇐ root

dlr-unsolvable no hnf ⇐ no whnf ⇐ mute, no rnf

Ω -rules ΩM → Ω , λx.Ω → Ω ΩM → Ω none

refinement BT(M)≤Ω LLT(M)≤Ω BeT(M)

λβdlr dlβ lβ β
λβdlr-normal forms HNF ⊆ WHNF ⊆ Ter(λ111)−RED

Table 18.1: Survey of BT-LLT-BeT properties..

The definition of Böhm tree BT(M) of M is classic, and likewise that of the

Lévy–Longo tree or lazy tree LLT(M). For completeness sake we repeat them:

Definition 18.2 (Böhm trees, BT(M)).

BT(M) =

�
λ�x.yBT(M1) . . .BT(Mm) if M has hnf λ�x.yM1 . . .Mm,

Ω otherwise.

Definition 18.3 (Lévy–Longo trees, LLT(M)).

LLT(M) =






xLLT(M1) . . .LLT(Mm) if M has whnf xM1 . . .Mm,

λx.LLT(M�) if M has whnf λx.M�
,

Ω otherwise.

Definition 18.4 (Berarducci trees, BeT(M)).

different ways to count depth

308 18 Head reduction and root reduction: unsolvable terms

l left in an application;
r right in an application.

Each of these three dimensions d, l,r can be ‘suppressed’ in counting the depth of
an occurrence in a λ -term, giving rise a priori to eight possible semantics, that are
indicated by tuples 000, . . . ,111 stating which of the directions d, l,r, is nullified
(0), or counted (1). E.g., the 110-depth counts only d- and l-steps, disregarding the
r-steps. Using this notion of depth in a term, we define the usual 2−n notion of
distance between λ -terms, referring to the least depth n where they differ. After
metric completion this leads to eight complete metric spaces of finite and infinite λ -
trees. They are equipped with generalizations of the finitary notions of substitution,
α-conversion and β -reduction. Of these λdlr-calculi, λ000 is trivial as an infinitary
calculus: it is the finite λ -calculus. Four others, λ010, λ011, λ100, and λ110, have to be
discarded as they lack some basic properties, such as substitutivity of the reduction
relation.

d

l r

λ001

d

l r

λ101

d

l r

λ111

Fig. 18.1: Suppressed dimensions..

Three remain: λ001, λ101, and λ111, see Figures 18.1 and 18.2. It turns out that
these three infinitary calculi λ001, λ101, λ111 when extended with the obvious Ω -
rules (rules for replacing undefined terms with Ω ) to get rid of meaningless terms (to
wit, terms without head normal form (hnf), terms without weak head normal form
(whnf), and ‘mute’ terms, respectively), are the natural habitats for the three well-
known notions of infinite λ -trees: λ001 contains the Böhm trees BT(M), with M a
λ -term, λ101 contains the Lévy–Longo (or lazy) trees LLT(M), and λ111 contains
the Berarducci trees BeT(M). In all three infinitary λ -calculi we obtain the Böhm
trees, the Lévy–Longo trees, and the Berarducci trees in a uniform way as infinitary
normal forms.

In Table 18.1 we give a complete survey of the notions involved.

Definition 18.1.
(i) A term is a head normal form (hnf) if it is of the form λ�x.y�M with�x = x1 . . .xn

and �M = M1 . . .Mm.
(ii) A term is a weak head normal form (whnf) if is an abstraction λx.M or a vector

xM1 . . .Mm where x is a variable.
(iii) A term is a root normal form (rnf), or root-stable, if it is a variable, an abstrac-

tion λx.M, or an application MN where M does not reduce to an abstraction.
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M BT(M) LLT(M) BeT(M)

(λx.xx)(λx.xx) Ω Ω Ω
(λxy.xx)(λxy.xx) Ω • •
(λx.xxz)(λx.xxz) Ω Ω ω z

(λx.z(xx))(λx.z(xx)) zω zω zω

λy.((λx.xx)(λx.xx)) Ω λy.Ω λy.Ω
(λx.xx)(λx.xx)y Ω Ω Ωy

Table 18.2: BT, LLT, BeT-examples..

(i) BeT(M) = y if M � y
(ii) BeT(M) = λx.BeT(N) if M � λx.N

(iii) BeT(M) = BeT(M1)BeT(M2) if M � M1 M2 such that M1 is of order 0 (i.e.,

cannot reduce to some λx.M�
1
)

(iv) BeT(M) = Ω in all other cases; such M are called mute.

A term M is mute if it is a term of order 0 which cannot be reduced to a variable or

to an application of a term of order 0 to any term. Equivalently: M has an infinite

reduction with at the root infinitely many times a redex contraction.

See Table 18.2 and Figure 18.3 for examples of the three kinds of trees.

z

z

z

z

ω z

BeT

λx0

λx1

λx2

Black hole,
or omnivore

LLT BeT

z

z

z

z

zω

LLTBT BeT

Fig. 18.3: Three infinite λ -terms. The color flags mention to which families of
trees they belong..

18.1.0.3 Strategic redexes: root, head, lazy and spine redex

To have a spine is very important, and for λ -terms it is the same. In fact, on

the spine of a λ -term all the ‘important’ redexes are located. We will call them

typical terms in the three domains



ω3

ω3

ω3

ω3

ω3

ω3

ω3

ω3

ω3

BeT(YΩ3) =

ω3

ω3

ω3

BeT(Ω3) =

ω3

ω3

I

BeT(Ω3I) =

not easy easy

easy for closed normal forms;
open problem for general terms

Berarducci Trees

a tool for consistency analysis
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dent assignment to prove the equivalence with the more direct set up via the present

λ ∞βΩBT-calculus.)

18.1.0.7 Restoring infinitary confluence by quotienting undefined terms

It is a pitfall to think that all normal forms from λ ∞β -calculus are BT’s. To

see what is the difference, we formulate the following theorem. Of course one can

characterize the normal forms from λ ∞β -calculus in a negative way, by stating that

they do not contain (the pattern of) a β -redex; but this does not give insight in their

structure, from what components they are built, see Figure 18.9. Now we see that

the components with infinite spine are not possible in a Böhm tree. On the other

hand, the normal forms from λ ∞β -calculus are BeT’s, Berarducci trees. Below we

will use this fact.

It is interesting to consider the question what BT’s are actually realizable by fi-

nite λ -terms, i.e, which of them are finitely generated. Note that we can compose

continuum many BT’s with their building blocks as given in Figure 18.5, or equiv-

alently, as normal forms of infinitary λ ∞βΩBT-calculus. This question is answered

in [Bar84, Theorem 10.1.23], in the way one would expect; all and only the com-

putably enumerable BT’s are finitely generated, of course provided they have only

finitely many free variables. Interestingly, this characterization is much more sub-

tle for the λ I-version of the BT’s; it then requires moreover the computability of a

variable indicator, see [Bar84, Theorem 10.1.25]. It would be interesting to do this

exercise also for the case of LLT and BeT.

Theorem 18.1. The normal forms from λ ∞β -calculus are built (coinductively) from

the four building block types as in Figure 18.9, namely a variable, hnf-contexts, the

Omnivore, and d
∗
l
ω

-terms.

λx0

λx1

λx2

λxn

x

λx0

λx1

λx2

λx3

λx4

...

λx0

λx1

λx2

λxn

. . .

Fig. 18.9: Building blocks for λ ∞β -normal forms..

building blocks for infinitary lambda normal forms
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Definition 20. Let M ∈ Ter
∞
(λ⊥). Then we define the Böhm Tree BT(M), Lévy–

Longo Tree LLT(M), and Berarducci Tree BeT(M) coinductively by

BT(M) =

�
λ�x.y BT(M1) . . .BT(Mm) if M has hnf λ�x.yM1 . . .Mm,

⊥ otherwise.

LLT(M) =






x LLT(M1) . . . LLT(Mm) if M has whnf xM1 . . .Mm,

λx.LLT(M �
) if M has whnf λx.M �

,

⊥ otherwise.

BeT(M) =






y if M →→ y,

λx.BeT(N) if M →→ λx.N ,

BeT(M1)BeT(M2) if M →→ M1 M2 such that M1 is of order 0,

⊥ in all other cases (i.e., when M is mute).

3. Clocked Lambda Calculus

In previous work (EHK10; EHKP12), we introduced clocked Böhm Trees by annotating

Böhm Trees. Here we give a first-class status to the clocks, and obtain the clocked BTs as

the infinitary normal forms in an extended λ-calculus. We extend the λ-calculus with an

explicit unary constructor τ in the spirit of (AJ02); cf. also (Wad81; Par83; NI89) (the

latter though have no explicit constructor leading to the annotations as we define below).

The idea is that in the normalization to the Böhm Tree, we leave behind an occurrence

of τ at a position p to witness the β-step needed to head normalize the subterm at p.

Definition 21. The set Ter
∞
(λτ) of (finite and infinite) terms of the clocked λ-calculus

is coinductively defined by the following grammar

M ::=
co x | λx.M | MM | τ(M) (x ∈ X )

The set Con
∞
(λτ) of infinite contexts is inductively defined by

C ::= ✷ | λx.C | CM | MC | τ(C) (x ∈ X ,M ∈ Ter
∞
(λτ))

Next we define a rewrite relation → for obtaining clocked Lévy–Longo Trees (LLTs)

as its infinitary normal forms. LLTs form a refinement of Böhm Trees, and likewise so for

their clocked variants. The reason for focusing on LLTs will become clear in the sequel.

Definition 22. The relation → on Ter
∞
(λτ) of the clocked λ-calculus is defined as

the closure under contexts of the rules

(λx.M)N → τ(M [x :=N ]) (βτ)

τ(M)N → τ(MN) (τ -app)

The τ symbol can be interpreted as follows: in the normalization of a term to its

LLT every subterm τn(M) means that n β-steps were needed to normalize the original

subterm to M , its weak head normal form (whnf, see Definition 18). Infinite stacks τω

then stand for ‘undefined’, i.e., the original subterm did not have a whnf.

Coinductive definition of BT, LLT, BeT
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strategic redexes; they are known as root, head, lazy and spine redex. The definition
is illustrated in Figure 18.4, and proceeds, informally, as follows.

λx1

λx2

λy1

λy2

λ z1spine

head

λy1lazy

λy1root

redex is root ⇒ lazy ⇒ head ⇒ spine

Fig. 18.4: The strategic redexes: root, lazy, head and spine..

The spine of a λ -term, finite or infinite, is the maximal dl-branch. Redexes whose
pattern is on the spine are spine redexes. The uppermost one is the head redex. It is
the root redex if its root is that of the whole term.

In the BT (001) sense, there may be several redexes at depth 0, the spine redexes;
the uppermost one in the syntactic sense is the head redex. In the LLT (101) sense,
there is at most a unique redex at depth 0, which is the lazy redex. In the BeT (111)
sense, there is at most one, unique, redex at depth 0, the root redex.

An elegant characterization of depth-0 redexes is due to Fer-Jan de Vries. De-
pending on which of the derivation rules d, l,r is adopted, the inference systems
given in Table 18.3 allows just the redexes of dlr-depth 0 to be contracted; e.g.,
with rules β ,d, l we have spine reduction; with β , l we have lazy reduction, and
with only β we have root reduction. The normal forms for these three notions of
reduction are the hnf’s, the whnf’s, and the non-redexes, respectively.

(λx.M(x))N → M(N)
β

M → N
λx.M → λx.N d M → N

MZ → NZ l M → N
ZM → ZN

r

Table 18.3: Characterizing redexes at depth 0. The rules d, l,r are also known as
ξ ,ν ,µ . .

the typical redexes
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!
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Figure 18: Notions of ‘undefined’ in λ-calculus.

3.2.5. Lambda theories
The syntactic analysis of finite and infinitary λ-calculus sheds more light on

some of the main models of λ-calculus, Pω. It is long known that the theory of

Pω (i.e., all equationsM = N true in Pω) is that of BT-equality. It is interesting
that we can split up this equality in two ‘orthogonal’ components: on the one

hand there is equating all unsolvables (i.e., terms M with BT(M) = Ω), called
the theory H in [2]; on the other hand, there is the ‘infinite expansion’ given by

the theory of λωβ. The supremum of both theories is the theory of Pω.
Figure 19 gives the partial order of these theories, for the three different

frameworks. The B in that figure is the theory of BT-equality described first

in [2, Section 18.4]. This can be seen as a precursor of our λ∞βΩBT. BT’s are
there applied to each other by first taking their projections up to depth n, then
applying these finite BT’s to each other, and finally taking the limit. (It would

be an interesting student assignment to prove the equivalence with the more

direct set up via the present λ∞βΩBT-calculus.)

3.2.6. Restoring infinitary confluence by quotienting undefined terms
It is a pitfall to think that all normal forms from λ∞β-calculus are BT’s.

To see what is the difference, we formulate the following theorem. Of course

one can characterize the normal forms from λ∞β-calculus in a negative way,

by stating that they do not contain (the pattern of) a β-redex; but this does

not give insight in their structure, from what components they are built, see

Figure 20. Now we see that the components with infinite spine are not possible

in a Böhm tree. On the other hand, the normal forms from λ∞β-calculus are

BeT’s, Berarducci trees. Below we will use this fact.

It is interesting to consider the question what BT’s are actually realizable

by finite λ-terms, i.e, which of them are finitely generated. Note that we can

compose continuum many BT’s with their building blocks as given in Figure 16,

or equivalently, as normal forms of infinitary λ∞βΩBT-calculus. This question

is answered in [2, Theorem 10.1.23], in the way one would expect; all and only

25

notions of undefinedness, with a caveat
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Question:
Do we have LLT and BeT 
versions of P # ?

continuum many 
theories

Question:
can we interpret $∞(% in P# ?

CR, ¬CR∞,
¬SN∞, UN∞

CR∞, UN∞,
SN∞

CR, ¬CR∞,
UN∞

Th(Pω) = B

λ∞β Ω001

λ∞β Ω101

λ∞β Ω111

λβ Ω001

λβ Ω101

λβ Ω111

λ∞
001

λ∞
101

λ∞
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Y3 ≡ Y0δδδ λa.a(ωδ ωδ δδa)

ωδ ωδ δδa a(ωδ ωδ δδa)

7
h

7
h

λa.a�

a�

clock behaviour of fpc in Böhm sequence of fpc’s
Y0, Y0 &, Y0 &&, Y0 &&&, Y0 &&&&, ...



Proof. Postfixing the combinator I = λx.x yields BY0I and BY0SI. Now BY0I =β

Y0 and BY0SI =β Y0(SI) = Y1, where Y1 is Turing’s fpc, Y1 = ZZ with Z =

λxf.f(xxf). Because Y0 �=β Y1, the result follows. In the same breath we can

strengthen this non-equation to all fpc’s Y, by the same calculation followed

by an application of Intrigila’s theorem [7] stating that for no fpc Y we have

Y = Yδ = Y(SI).

Here we could profit from some lucky coincidences. But how can we in more

general circumstances β-discriminate M,N when their BT’s do coincide? A clue

is given by inspecting the BT’s of the terms BY0 and BY0S, and in particular

how they are computed, in what ‘tempo’.

The idea is that we will extract from a λ-term more than just its BT, but also
how the BT was formed; one could say, in what tempo, or in what rhythm. A BT
is formed from static pieces of information, but these are rendered in a clock-wise

fashion, where the ticks of the internal clock are head reduction steps. Thus we

arrive at a refined notion of BT, where we annotate at the nodes the necessary

ticks of the clock, i.e., the number of head reduction steps, needed to go from

one position in the BT to a successor position. The equality thus arising is

strictly intermediate between β-convertibility =β , and Böhm tree equality =BT.

The clocked Böhm trees of BY0 and BY0S are displayed in Figure 21.

λb
[3]

λc

·

·

b

c
[0] ·

[1]

·

b

c
[0] ·

[1]

·

b

c
[0]

. . .

λb
[6]

λc

·

·

b

c
[0] ·

[4]

·

b

c
[0] ·

[4]

·

b

c
[0]

. . .

Figure 21: Clocked Böhm trees of BY0 and BY0S.

Definition 3.5 (Simple terms). A term M is simple, if in no reduction of M
a redex is multiplied. So every redex (λx.A)B contracted in a reduct of M ,

has the property that x occurs at most once in A, or B is in normal form.

An equivalent and useful reformulation is that in reduction diagrams involving

reducts of M , no splitting in elementary diagrams occurs.

An example of a term that is not simple is Y0δ with δ = λxy.y(xy); it

reduces to ωδωδ and this term may duplicate the redex in the second ωδ. But

28

14.4. Clock Behaviour of Lambda Terms 9

·
[2]

f ·
[1]

f ·
[1]

f . . .

[1]

·
[2]

f ·
[2]

f ·
[2]

f . . .

[2]

Figure 14.3: Clocked Böhm Trees of Y0f and Y1f..

Let us consider the fpc’s Y0 of Curry and Y1 of Turing. We have Y0 ≡
λf.ωfωf where ωf ≡ λx.f(xx), and

ωfωf →1
h f(ωfωf)

Therefore we obtain BT (Y0f) = [2]fBT (ωfωf), and BT (ωfωf) = [1]fBT (ωfωf).
For Y1 ≡ ηη where η ≡ λx.λf.f(xxf) we get:

Y1f ≡ ηηf →2
h f(ηηf)

Hence, BT (Y1f) = [2]fBT (Y1f). Figure 14.3 displays the clocked Böhm

Trees of Y0f (left) and Y1f (right).

The following definition captures the well-known Böhm equality of

λ-terms.

Definition 14.4.2. λ-terms M and N are BT-equal, denoted by M =BT N,

if BT(M) ≡ BT(N).

If M and N are not BT-equal, then M �=β N. Consequently, if for some

λ-term F, we have BT(MF) �≡ BT(NF), then M �=β N.

Below, we refine this approach by comparing the clocked Böhm Trees

BT (M) and BT (N) instead of the ordinary (non-clocked) Böhm Trees.

In general, BT (M) �≡ BT (N) does not always imply that M �=β N.

Nevertheless, for a large class of λ-terms, called ‘simple’ below, this im-

plication will turn out to be true.

In the following definition, we lift relations over natural numbers to

relations over clocked Böhm Trees.

Definition 14.4.3. Let T1 and T2 be clocked Böhm Trees, and R ⊆ N × N.

We define the following notations:

(i) For p ∈ Pos(T1)∩Pos(T2) we let T1 Rp T2 denote that either both T1|p
and T2|p are not annotated, or both are annotated and then T1|p ≡
[k1]T �

1 and T2|p ≡ [k2]T �
2 with k1 R k2.

Clocked BT’s of Y0f and Y1f



Clocked Lambda Calculus

(λx.M)N → τ(M[x :=N])
τ(M)N → τ(MN)

The τ’s are ticks of the clock (measure of efficiency).
Properties: orthogonal, SN∞, CR∞, UN∞

Normal forms are clocked Lévy–Longo trees:

τ2

·

f τ1

·

f τ1

·

f . . .

τ2

·

f τ2

·

f τ2

·

f . . .

nf (Y0 f )≡ nf (Y1 f )≡

different clock
⇒ Y0 �= Y1



2 Chapter 14 — Clocked Böhm Trees

14.1 Introduction

Suppose we have given two λ-terms M, N, and we aim to prove that

they are β-inconvertible: M �=β N. If M, N happen to have a normal

form, M →→ M �
and N →→ N �

with M �
, N �

in normal form, this is simple:

the unique normal form property UN (with respect to β-reduction) states

that M =β N implies M, N have the same normal form. So we check

whether M � ≡ N �
and we are done, M =β M ⇐⇒ M � ≡ N �

.

Also when M, N do not have a normal form, we are not at a loss.

Then we invoke the ‘infinitary normal form’ of M, N being the Böhm

Trees BT(M) and BT(N). Indeed we have

M =β N =⇒ BT(M) = BT(N),

So if the BTs are different, we have M �=β N. But what if BT(M) =
BT(N)? The reverse of (β) does not hold, as is in particular witnessed

by fixed point combinators (fpcs); these all have as BT the infinite term

λf.fω; but not all fpcs are β-convertible.

So the problem that we are facing is: how to prove M �=β N when

BT(M) = BT(N). In this chapter we will develop a systematic method for

this β-discrimination problem. We will do so by employing an enriched

form of BTs, where we attach information to the nodes as to the formation

tempo of the BTs. Here the unit of time is a head reduction step; head

reduction is the well-known reduction procedure to build BTs.

BT
BT

BT LLT
LLT

LLT BeT
BeT

BeT

=β

Figure 14.1: Comparison of (atomic) clock semantics and unclocked semantics.

Higher means more identifications.

For a more extensive treatment of this discrimination method, we re-

fer to [7, ?, ?]. There we strengthen the discrimination power by intro-

ducing a further refinement called ‘atomic clocks’. Moreover, as an illus-

clocked lambda theories

Exercise.
(i) in $∞( there is only one Ogre, 
Omnivore;

(ii) in $( there are infinitely many, 
i.p. all YnK are different
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C

redex r

pattern

Fig. 16.7: Blue mountains.

+∞

+∞

−∞

0 •
•
•
•
•
•
•

n

Fig. 16.8: Graph for the oscillating PS-word ψ = P1S2P3 . . . . .

It can be shown that if the graph of a word w:

(i) has no upper bound, then w �� Sω ,
(ii) has no lower bound, then w �� Pω ,

(iii) has no upper and lower bound, then w �� v for any infinite PS-word v.

the reduct ZZ = Y1 of ωδωδ is simple, and likewise all ZZδ∼n
. (Here we use

the notation AB∼n
, defined by AB∼0

= A and AB∼n+1
= ABB∼n

.) This

example illustrates that although sometimes the terms under consideration are

not simple, with some luck they can be simplified by some reductions. Another

example is Y1(SS)SI as in the example above. Due to the presence of the redex

(SS) this term is not simple. But it can easily be simplified, by reducing SS to

its normal form λyzz�.zz�(yzz�). (But there are also terms that have no simple

reduct, i.e., cannot be simplified in this sense.)

Theorem 3.4 ([6]). For simple terms, clocks are invariant under reduction.

3.4. λ∞βη-calculus

The preceding theory begs the question how it can be generalized from the

infinitary λ∞β-calculus to the infinitary λ∞βη-calculus, which arises by adding

the η-rule. That is, the rewrite rules of λ∞βη are:

(λx.M)N → M [x:=N ] (β)

λx.Mx → M if x is not free in M (η)

Familiarity with the finite λ-calculus learns that the extension of λβ-calculus
to λβη-calculus preserves many desirable properties, the foremost being the

Church–Rosser property (CR). Working with the λ∞β-calculus we do not have

the infinitary CR-property, CR
∞
, as we saw, but we do have its corollary, UN

∞
.

So it is natural to ask whether this property is preserved in the λ∞βη-calculus.
However, this property breaks down dramatically. The essence of this break-

down is already clearly visible in the first-order framework, as we will now show,

to form a stepping stone to the infinitary lambda calculus setting.

3.4.1. Failure of UN
∞ for weakly orthogonal iTRSs.

While orthogonal TRSs enjoy the property UN
∞

(see [9, 13]), UN
∞

breaks

down for weakly orthogonal TRSs (see [5]). The following simple counterex-

ample can be used: for the signature consisting of the unary symbols P and

S, consider the rewrite rules P(S(x)) → x and S(P(x)) → x. For convenience,

we drop the brackets and consider the corresponding string rewriting system

(SRS):

PS → ε SP → ε

where ε is the empty word. This system has two trivial critical pairs:

P ← PSP → P S ← SPS → S ,

and hence is weakly orthogonal.

Now consider the term ψ defined as follows:

ψ = PSSPPPSSSSPPPPPSSSSSS . . .

29

that is, ψ = P1S2P3S4P5S6 . . .. If we only apply rule PS → ε the P-blocks are
absorbed by the larger S-blocks to their right (that is: PnSn+1 →∗ ε), leaving
the normal form Sω. Likewise, applying only SP → ε yields Pω:

Sω ←←← ψ →→→ Pω

Note that Sω and Pω are normal forms, the only infinite normal forms. It is
not difficult to prove that ψ →→→ w for every infinite PS-word w. In particular
ψ → (PS)∞ which has no normal form, it rewrites only to itself.

Given an infinite PS-word w we can plot in a graph the surplus number of
S’s of w when stepping through the word w from left to right, see e.g. Figure 22.
The graph is obtained by counting S for +1 and P for −1. For w = (SP)ω the
graph takes values, consecutively, 1, 0, 1, 0, . . ., for w = Sω it takes 1, 2, 3, . . .,
and for w = Pω we have −1,−2,−3, . . .. The graph of the counterexample ψ is
displayed in Figure 22.

+∞

+∞

−∞

0 •
•
•
•
•
•
•

n

Figure 22: Graph for the oscillating PS-word ψ = P1 S2 P3 . . . .

It can be shown that if the graph of a word w:

(i) has no upper bound, then w →→→ Sω,
(ii) has no lower bound, then w →→→ Pω,
(iii) has no upper and lower bound, then w →→→ v for any infinite PS-word v.

3.4.2. Failure of UN∞ for λ∞βη-calculus.
Like P(S(x)) → x and S(P(x)) → x, the the λ∞βη-calculus is a weakly

orthogonal rewrite system. More precisely, the λ∞βη-calculus is a weakly or-
thogonal higher order rewrite system [19, Def. 11.6.10]. The λ∞βη-calculus
allows for two critical pairs:

Mx
β← (λx.Mx)x

η→ Mx λx.M [y:=x]
β← λx.(λy.M)x

η→ λy.M

30
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·
λx0

λx1

·
·

·
λx−1

λx0

λx1

λx2

·
·

·
·

·
.
.
.

x−2

x−1

x0

x1

x2

x−1

x0

x1

x0

λx1

λx2

.

.

.

·
·

·
.
.
.

x−2

x−1

x0

β η

Fig. 17.6: Counterexample to UN
∞ in λ ∞βη ..

and Marek Kwiatkowski, who investigated this subject up to ε0, in his masters thesis. Ariya

Isihara showed how to proceed to Γ0, among other contributions which are forthcoming in his

PhD thesis.

Question:
$∞(*% ! CR∞

$∞(* ! UN∞
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Fig. 18.18: Large random λ -term, viewed as a mini-cosmos, evolving non-
deterministically by local changes due to β -steps; their patterns are the red
configurations. In the final result the place and nature of the normalized parts
of the structure, as well as the singularities formed by the unsolvable terms,
the black holes, is ’predestined’, independent of the actual evolution path to
the normal form, an infinite λβΩ -term.
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