
Disproving Confluence

of Term Rewriting Systems

Takahito Aoto (Tohoku University)

IWC 2013

Outline

1. Backgrounds

2. Proving Non-Joinability by Interpretation

3. Proving Non-Joinability by Ordering

4. Implementation and Experiments

Disproving Confluence of TRSs

Find terms t1, t2 such that

(1) s
∗
→ t1 and s

∗
→ t2 for some s, and

(finding ’candidates’ for non-confluence witness)

(2) t1
∗
→ u and t2

∗
→ u for no u,

i.e. {u | t1
∗
→ u} ∩ {v | t2

∗
→ v} = ∅.

(proving non-joinability of ’candidates’)

1/16

Disproving Confluence of TRSs

Find terms t1, t2 such that

(1) s
∗
→ t1 and s

∗
→ t2 for some s, and

(finding ’candidates’ for non-confluence witness)

(2) t1
∗
→ u and t2

∗
→ u for no u,

i.e. {u | t1
∗
→ u} ∩ {v | t2

∗
→ v} = ∅.

(proving non-joinability of ’candidates’)

We let the problem (1) untouched, and consider the

problem (2).

1/16

Disproving Confluence of TRSs

Find terms t1, t2 such that

(1) s
∗
→ t1 and s

∗
→ t2 for some s, and

(finding ’candidates’ for non-confluence witness)

(2) t1
∗
→ u and t2

∗
→ u for no u,

i.e. {u | t1
∗
→ u} ∩ {v | t2

∗
→ v} = ∅.

(proving non-joinability of ’candidates’)

We let the problem (1) untouched, and consider the

problem (2).

We abbreviate {u | t1
∗
→ u} ∩ {v | t2

∗
→ v} = ∅ as

NJ(t1, t2).
1/16

Proving Non-Joinability by Tree Automata

Only(?) serious approach for proving non-joinability is

using tree automata approximation (Durand-Middeldorp,

CADE 1997; Genet, RTA 1998).

(1) Construct tree automata A1,A2 such that {u |

ti
∗
→ u} ⊆ L(Ai) (i = 1, 2) by tree automata

approximation.

(2) Check L(A1) ∩ L(A2) = ∅.

2/16

Proving Non-Joinability by Tree Automata

Only(?) serious approach for proving non-joinability is

using tree automata approximation (Durand-Middeldorp,

CADE 1997; Genet, RTA 1998).

(1) Construct tree automata A1,A2 such that {u |

ti
∗
→ u} ⊆ L(Ai) (i = 1, 2) by tree automata

approximation.

(2) Check L(A1) ∩ L(A2) = ∅.

Sometimes it is difficult to construct a well-

approximated tree automaton.

This work: another approach for proving non-joinability.

2/16

Outline

1. Backgrounds

2. Proving Non-Joinability by Interpretation

3. Proving Non-Joinability by Ordering

4. Implementation and Experiments

Interpretation

We first recall some standard definitions.

An F-algebra A = 〈A, 〈fA〉f∈F〉 is a set A equipped

with functions fA : An → A for each n-ary function

symbol f ∈ F .

A valuation σ on a F-algebra A is a mapping σ : V → A.

The interpretation [[t]]σ ∈ A of a term t ∈ T(F ,V) is

given by

[[x]]σ = σ(x)

[[f(t1, . . . , tn)]]σ = fA([[t1]]σ, . . . , [[tn]]σ)

3/16

Idea of Using Interpretation

If there exist an F-algebra and a valuation σ such that

(i) u →R v implies [[u]]σ = [[v]]σ and (ii) [[s]]σ 6= [[t]]σ,

then NJ(s, t).

4/16

Idea of Using Interpretation

If there exist an F-algebra and a valuation σ such that

(i) u →R v implies [[u]]σ = [[v]]σ and (ii) [[s]]σ 6= [[t]]σ,

then NJ(s, t).

But, since u
∗
→ s and u

∗
→ t for some u, there is no such

an F-algebra for our candidates s, t.

4/16

Idea of Using Interpretation

If there exist an F-algebra and a valuation σ such that

(i) u →R v implies [[u]]σ = [[v]]σ and (ii) [[s]]σ 6= [[t]]σ,

then NJ(s, t).

But, since u
∗
→ s and u

∗
→ t for some u, there is no such

an F-algebra for our candidates s, t.

Idea: replace (i) by the following (i′)

(i′) u →{l→r} v implies [[u]]σ = [[v]]σ for any usable

rule l → r ∈ R.

Here, usable means it can happen s
∗
→R ◦ →{l→r} u

or t
∗
→R ◦ →{l→r} u for some u (given in the next slide).

4/16

Usable Rules for Non-Joinability

Definition. The set of usable rules U(s) ⊆ R is the

smallest set satisfying:

(i) for any non-variable subterm f(u1, . . . , un) of s and

l → r ∈ R, if f(TCAP(u1), . . . ,TCAP(un)) and l are

unifiable then l → r ∈ U(s); and

(ii) if l′ → r′ ∈ U(s) and l → r ∈ U(r′), then l → r ∈

U(s).

Lemma. If s
∗
→R ◦ →{l→r} t then l → r ∈ U(s).

Here, we assume variable conditions of rewrite rules.

It is straightforward to generalize usable rules to the case

variable conditions do not hold.

5/16

Non-Joinability by Interpretation

Theorem 1. Let A = 〈A, 〈fA〉f∈F〉 be an F-algebra with

A =
⊎

i∈I Ai, and s, t terms. Suppose

(i) [[l]]σ ∈ Ai implies [[r]]σ ∈ Ai for any l → r ∈ U(s) ∪

U(t),

(ii) if a ∈ Ai implies fA(. . . , a, . . .) ∈ Aj, then for any

b ∈ Ai, f
A(. . . , b, . . .) ∈ Aj, and

(iii) [[s]]ρ ∈ Ai and [[t]]ρ ∈ Aj with i 6= j for some ρ.

Then NJ(s, t).

(Proof Sketch) (i),(ii) imply that for any s
∗
→R u →R v,

[[u]]ρ ∈ Ai implies [[v]]ρ ∈ Ai. �

6/16

Example 1.

R =

{

(1) a → h(c) (3) h(x) → h(h(x))

(2) a → h(f(c)) (4) f(x) → f(g(x))

}

.

Take candidates h(c), h(f(c)). Usable rules are {(3), (4)}.

Take an F-algebra A = 〈{0, 1}, 〈fA〉f∈F〉 as

aA = cA = 0,

fA(n) = 1 − n,

hA(n) = gA(n) = n.

Then [[h(x)]]σ = [[h(h(x))]]σ, [[f(x)]]σ = [[f(g(x))]]σ and

[[h(c)]] 6= [[h(f(c))]]. Hence, NJ(h(c), h(f(c))).

7/16

Example 2.

R =

{

(1) a → f(c) (3) f(x) → h(g(x))

(2) a → h(c) (4) h(x) → f(g(x))

}

.

Take candidates f(c) and h(c). Usable rules are {(3), (4)}.

Take an F-algebra A = 〈N, 〈fA〉f∈F〉 as

aA = cA = 0

gA(n) = n + 1

fA(n) = n

hA(n) = n + 1

Then [[f(x)]]σ ≡ [[h(g(x))]]σ (mod 2), [[h(x)]]σ ≡

[[f(g(x))]]σ (mod 2) and [[f(c)]] 6≡ [[h(c)]] (mod 2). Hence

NJ(f(c), h(c)).
8/16

Outline

1. Backgrounds

2. Proving Non-Joinability by Interpretation

3. Proving Non-Joinability by Ordering

4. Implementation and Experiments

Non-Joinability by Ordered F-algebras

For a set of integers, an obvious choice of partition is

A = {n ∈ A | n < k} ⊎ {n ∈ A | k ≤ n} for some

fixed k. More generally, one can use ordered F-algebras

A = 〈A,≤, 〈fA〉f∈F〉, where ≤ is a partial order on A.

Theorem 2. Let A be a weakly monotone ordered F-

algebra and s, t be terms. Suppose

(i) [[l]]σ ≤ [[r]]σ for any valuation σ and any l → r ∈ U(s),

(ii) [[l]]σ ≥ [[r]]σ for any valuation σ and any l → r ∈ U(t),

(iii) [[s]]ρ > [[t]]ρ for some valuation ρ.

Then NJ(s, t).

9/16

Discrimination Pair

We now take term algebras for F-algebras, and ordering

on terms.

Definition. A pair 〈&,≻〉 of two relations & and ≻ is said

to be a discrimination pair if (i) & is a rewrite relation,

(ii) ≻ is a strict partial order and (iii) & ◦ ≻ ⊆ ≻ and

≻ ◦ & ⊆ ≻.

Theorem 3. Let R be a TRS and s, t terms. Suppose

there exists a discrimination pair 〈&,≻〉 such that U(s) ⊆

., U(t) ⊆ & and s ≻ t. Then NJ(s, t).

10/16

(Proof Sketch) Since & is a rewrite relation, it follows

that u →{l→r} v implies u . v for any l → r ∈ U(s),

and u →{l→r} v implies u & v for any l → r ∈ U(t).

Suppose s
∗
→ u and t

∗
→ u. Let s = s0 → s1 → · · · →

sn = u. Then s = s0 →U(s) s1 →U(s) · · · →U(s) sn = u.

Thus s . · · · . u. Since t ≺ s . · · · . u, we obtain

t ≺ u by the property & ◦ ≻ ⊆ ≻ of the discrimination

pair.

Similarly, from t → · · · → u, we obtain t & · · · & u.

By u ≻ t & · · · & u, we obtain u ≻ u by the property

≻ ◦ & ⊆ ≻ of the discrimination pair.

This contradicts our assumption that ≻ is a strict

partial order. �
11/16

Argument Filtering for Non-Joinability

One can incorporates the same notion of argument

filtering in dependency pairs.

An argument filtering is a mapping such that π(f) ∈

{[i1, . . . , ik] | 1 ≤ i1 < · · · < ik ≤ arity(f)} ∪ {i |

1 ≤ i ≤ arity(f)} for each f ∈ F . We define

f(t1, . . . , tn)
π = f(tπi1, . . . , t

π
ik
) if π(f) = [i1, . . . , ik],

f(t1, . . . , tn)
π = tπi if π(f) = i. For TRS R, we put

Rπ = {lπ → rπ | l → r ∈ R}.

Theorem 4. Let R be a TRS and s, t terms. Suppose

there exists a discrimination pair 〈&,≻〉 and argument

filtering π such that URπ(sπ) ⊆ ., URπ(tπ) ⊆ & and

sπ ≻ tπ. Then NJ(s, t).
12/16

Example 3.

R =

{

(1) c → f(c, d), (3) f(x, y) → h(g(y), x),

(2) c → h(c, d) (4) h(x, y) → f(g(y), x)

}

.

Take candidates h(f(c, d), d) and f(c, d).

Take π(g) = 1, π(f) = [2] and π(h) = [1]. Then

U(sπ) = {(3)π, (4)π} and U(tπ) = {(3)π, (4)π}.

Then we obtain the constraint

h(f(d)) ≻ f(d), f(y) ≃ h(y), h(x) ≃ f(x)

which is satisfied by a discrimination pair 〈&rpo,&rpo \

.rpo〉 with precedence f ≃ h. Thus NJ(s, t).
13/16

Outline

1. Backgrounds

2. Proving Non-Joinability by Interpretation

3. Proving Non-Joinability by Ordering

4. Implementation and Experiments

Implementation

We implemented our techniques on the confluence

prover ACP.

• Interpretation by F-algebras (Theorem 1) using the

polynomial interpretation with linear polynomials and

partition N =
⊎

0≤i<k{n | n mod k = i} (k = 2, 3).

• Interpretation by ordered F-algebras (Theorem 2) with

polynomial interpretation via linear polynomials.

• Descrimination pair (Theorem 4) using recursive path

order with argument filtering.

Criteria are encoded as a constraint and an external

SMT-solver is called to check it has a solution.
14/16

Experiments
Th.1 Th.1 Th.2 Th.4 all(k = 2) (k = 3) (poly) (rpo)

Example 1 X X X X X

Example 2 X X × × X

Example 3 × × × X X

23 ex. (success/t.o.) 16/0 16/3 14/0 19/0 21/1
23 ex. (time) 25 293 206 26 84
35 ex. (success/t.o.) 17/5 16/8 17/3 17/1 16/9
35 ex. (time) 318 562 446 106 761

ACP CSI Saigawa
Example 1 × × ×

Example 2 × × ×

Example 3 × × ×

23 ex. (success/t.o.) 9/0 12/– 3/1

23 ex. (time) 2 2107 228

35 ex. (success/t.o.) 18/1 21/– 17/6

35 ex. (time) 71 485 482

23 new examples

35 examples from Cops

ACP v.0.31

CSI v.0.2

Saigawa v.1.4

15/16

Conclusion

Disproving confluence by showing non-joinability of

candidates.

• Proving non-joinability by interpretation

F-algebra, usable rules

• Proving non-joinability by ordering

ordered F-algebra

discrimination pairs, argument filtering

• Implementation and experiments

Future Works

• More effective interpretation and ordering
16/16

