3.1.

(01)* .. 01
0(0+1)* ... 0 0 1

(01)* = {=,01,0101,010101,01010101,...}
0(0+1)*={0,00,01,000,001,010,011,0000,...}

— UNIX ...grep, emacs, awk, perl, ...
— Windows

1/46

3. Regular Expression:
(Text 3.1,3.2)

3.1. Regular Expression

— Regular Expression describes a set of words (=language)
by finite characters
Ex (01)* ... words repeating 01’
0(0+1)* ... repeating ‘O’ or ‘1’ after O
l.e.
(01)* = {=,01,0101,010101,01010101,...}
0(0+1)*={0,00,01,000,001,010,011,0000,...}

— Familiar if you are UNIX-user...grep, emacs, awk, perl,

— So-called ‘Wild-card’ in filenames on Windows

2146

3.1.

e ab+a - {ab,a}
- 0
_ *x 0
e (ab)* - {=&, ab, abab, ababab,...}

((ab)*c)+(a*)

- {&, a, ¢, aa, aaa, abc, aaaa, aaaaa, ababc,... }
3/46

3. Regular Expression:
(Text 3.1,3.2)

3.1. Brief explanation
— A character and string is as Is:

e ab+a - {ab,a}
— ‘() makes a group

— “*" means repetition 0 times or more
e (ab)* - {=&, ab, abab, ababab,...}

An complicated example:
((@b)*c)+(a*)

- {&, a, ¢, aa, aaa, abc, aaaa, aaaaa, ababc,... }
4/46

3. :
(3.1,3.2)
3.1.1.

1. (union): L, M L M

L M

. . {AB,C} {ab,c}={ab,c,AB,C}
2. (concatenation): LM LM(

L M)

— . {AB,C}{a,b,c} = {ABa, ABDb, ABc, Ca, Chb, Cc}

3. (closure): L L* L 0

— . {a,b,c}*={&,a,b,c,aa,ab,ac,ba,bb,bc,ca,cb,cc,aaa,...}
5/46

3. Regular Expression:
(Text 3.1,3.2)

3.1.1. Operations over regular expressions

1. TheunionL M contains elements in L or M.
 Ex:{AB,C} {a,b,c}={a b,c, AB,C}

2. The concatenation of two languages L and M is denoted
by LM (or L M) is a set of all combinations of two
elements from L and M, respectively.

— Ex: {AB, CH{a, b, c} = {ABa, ABb, ABc, Ca, Cb, Cc}

3. The closure L* of a language L is a set of all
concatenations of any number of elements in L.

— Ex: {ab,c}*={&,a,b,c,aa,ab,ac,ba,bb,bc,ca,cbh,cc,aaa,...}

6/46

3. ;
(3.1,3.2)
3.1.1.
2.5. LL L2 LLL LS
: {a,ab}? = {a,ab}{a,ab} = {aa,aab,aba,abab}
: L0 ={&}, LL:=L, Lk:= LIL (k>1)
3.5. . 2.5 L*

7146

3. Regular Expression:
(Text 3.1,3.2)

3.1.1. Operations over regular expressions

2.5. Comment on Concatenation: Sometimes, LL is denoted
by L?, and LLL is denoted by L3, and so on.
Ex: {a,ab}* = {a,ab}{a,ab} = {aa,aab,aba,abab}

o Def:L0:={&}, Ll =L, Lk:= LKL (k>1)

3.5. Comment on Closure: By 2.5, L* can be defined as
follows.

8/46

E
s b
a a
E F
E+F
EF(EF)

L(EF) = L(E)L(F)
E*
(E)

3.1,3.2)

L(E) °
L(£)={£}, L(P)=.
L(a) = {a}.

 L(E+F)=L(E) L(F)

, L(E*) = (L(E))*
, L((E)) = L(E)

9/46

3. Regular Expression:

Text 3.1,3.2
(Tex)

3.1.2. Construction of a regular expression S

(=1

Definition of a regular expression E and corresponding
language L(E)
1. Two constants £ and @ are regular expressions that represent
L(e)={}, L(D)=D.
2. Forasymbol a, a is regular expression that represents L(a) = {a}.
3. For two regular expressions E and F,
1. E+FisR.E. which represents L(E+F) =L(E) L(F)
2. EF(or E F)is R.E. which represents L(EF) = L(E)L(F)
3. E*is R.E. which represents L(E*) = (L(E))*
4. (E) is R.E. which represents L((E)) = L(E)

10/46

(3132

3.1.2.
01
1. (1): ()01 (b)10 (c)
1 (@ @o (b)
(01)* + (10)* + 1(01)* + 0(10)*
2. (2): 01 1 = 0
&

3. Regular Expression:
(Text 3.1,3.2)

3.1.2. Construction of a regular expression

Ex: A language that is the set of words such that ‘0
and 1 appear alternately’
1. Idea (1): (a) repetition of 01, (b) repetition of 10, (c)
(a) follows after 1, or (d) (b) follows after O.
e (01)* + (10)* + 1(01)* + 0(10)*

2. ldea (2): add 1 or £ before repetition of 01, and add
0 or £ afterit.

— (1+&)(01)*(0+=)

Different
representations for

the same language
12/46

(3132

3.1.2.
0
0
1. . abc = (ab)c,
atb+c=(a+b)+c
2. * : ab*=a(b)*#=(ab)*

3. 2 . a+bc = at(bc)*~(a+b)c
4, + . a+bc*+d = (a+(b(c*)))+d

13/46

3. Regular Expressions:
(Text 3.1,3.2)

3.1.2. Priority of the operations

We can omit some ()s If we define the priority of
the operations below:

1. From left to right for the same operations:
abc = (ab)c, at+b+c=(atb)+c

2. * has top priority: ab*=a(b)*=(ab)*
3. hasthe second: atbc = a+(bc)=(atb)c
4. +1sthe last: at+bc*+d = (a+(b(c*)))+d

14/46

3. 2.

(

DFA
£-NFA

=-NFA (

 DFA

3.1,3.2)

£-NFA

)
() 15/46

3. Regular Expression:
(Text 3.1,3.2)

3. 2. Finite automata and regular expressions

Goal: Class of languages represented by
regular expressions = Class of languages

accepted by automata

1. For any given regular expression, we can construct
an £-NFA that accepts the same language

2. For any given DFA, we can construct a regular
expression that represents the same language

. For any give(this Is easier)

«=-NFA seems more descriptive
* DFA has simpler structure than NFA s

(

3.1,3.2)
- &-NFA

 L(E)={&}, L(P)=P, L(a) = {a}.

, L(E+F)=L(E) L(F)
E F) ; L(EF) = L(E)L(F)
; L(E*) = (L(E))*
, L((E)) = L(E)

17/46

3. Regular Expression:
(Text 3.1,3.2)

3. 2. 3. Regular Expression - £-NFA

From the definition of R.E. and corresponding set
1. Two constants £ and d are regular expressions that represent
L()={}, L(D)=D.
2. Forasymbol a, a is regular expression that represents L(a) = {a}.
3. For two regular expressions E and F,
1. E+Fis R.E. which represents L(E+F)=L(E) L(F)
2. EF(or E F)is R.E. which represents L(EF) = L(E)L(F)
3. E*is R.E. which represents L(E*) = (L(E))*
4. (E) is R.E. which represents L((E)) = L(E)
we construct an £-NFA accepting the same language.

18/46

3. ;
(3.1,3.2)
3.2.3. - &-NFA
1. &, o, a , L(e)={€}, L(P)=P, L(a) = {a}.
L—
e o
o @

19/46

3. Regular Expression
(Text 3.1,3.2)

3. 2. 3. Regular Expression — £-NFA

1. &,d,asymbolaisR.E,; L(e)={€}, L(DP)=D, L(a) ={a}.

s = A
‘@ ©
. J
s A
'@ ©
. J
s A

4 a

O ©

20/46

3.1,3.2)

3.2.3 - &-NFA
2. E F
1. E+F L(E+F) = L(E) L(F)
2. EF(E F) , L(EF) = L(E)L(F)
3. E* , L(E*) = (L(E))*
4. (E) , L((E)) = L(E) E+F
{aE) C (aE Y
" ’ ‘f, ‘\ E
o o™ e v
N / \ - % /

3. Regular Expression:
(Text 3.1,3.2)

3. 2. 3. Regular Expression - £-NFA

2. ForR.E.EandF,

~

J

1.

2.

3.

4,
{,__NFAforE
Q@ ©
.
{,_NFAforF
K ©

-

~

J

E+F is R.E.; L(E+F) = L(E)
EF (or E F)isR.E.; L(EF) = L(E)L(F)
E*isR.E.; L(E*) = (L(E))*
(E) is R.E.; L((E)) = L(E)

=)

L(F)

NFA for E+F

-

0

NFA for E

-
-

@

NFA for F

e

(3132

3.2.3 - &-NFA
2. E F

1. E+F L(E+F)=L(E) L(F)
2. EF(E F) ; L(EF) = L(E)L(F)
3. E* , L(E®) = (L(E))*
4. (E) , L((E)) = L(E)

=) EF

'@ © N

mfe ej=fe o

3. Regular Expression:
(Text 3.1,3.2)

3. 2. 3. Regular Expression — £-NFA

2. ForRE.EandF,
E+FisR.E;;L(E+tF)=L(E) L(F)
EF (or E F)isR.E.; L(EF) = L(E)L(F)
E*isR.E.; L(E*) = (L(E))*

(E) isR.E.; L((E)) = L(E)

> w b

A NFA for EF

_
4, NFA for E
® © NEAforE — | = [—NFAforF
or &E or
> NFA for F < ‘ ® ® ® .}
~+a or
. . % \

- J

24146

3.2.3.

E+F
EF(
-
(E)

I

(

- &-NFA

E F

; L(E+F) = L(E)
, L(EF) = L(E)L(F)

, L(E*) = (L(E))*

, L((E)) = L(E)

E F)

o

°o m

3.1,3.2)

L(F)

-

E*

_
.

E

/

25/46

3. Regular Expression:
(Text 3.1,3.2)

3. 2. 3. Regular Expression - £-NFA
2. ForR.E.EandF,
1. E+FisR.E.;L(E+F)=L(E) L(F)
2. EF (orE F)isR.E.; L(EF) = L(E)L(F)
3. E*isR.E.; L(E*) = (L(E))*
4. (E)is R.E.; L((E)) = L(E)

- NFA E* Y

NFA E

o™ o m | = e

(3.1,3.2)
3. 2. 3. - &-NFA

-Q'

(1+8)(01)*(0+8)

27/46

3. Regular Expression:
(Text 3.1,3.2)

3. 2. 3. Regular Expression — £-NFA
Ex R.E. of strings s.t. 0 and 1 appear alternately;

@+2)00"(0+2)

‘©—©

E E
‘oio‘
8
‘©—©

01 0 oS L

28/46

(
3.2.*. &-NFA -
=-NFA A
=-NFA A’
1 1
2 v

3.1,3.2)

L(A)=L(A)

29/46

3. Regular Expression:
(Text 3.1,3.2)

3.2.*. &-NFA - Regular Expression

Lemma: For any £-NFA A, there exists an £-NFA A’
with L(A)=L(A") such that
1. A’ contains exactly one accepting state, and there
are no transitions from the accepting state, and

2. for any state g, there is a path from the initial state,
and there Is a path to the accepting state.

30/46

(
3.2.*. &-NFA -
=-NFA A
=-NFA A’
1 1
2 g

3.1,3.2)

L(A)=L(A)

31/46

3. Regular Expression:
(Text 3.1,3.2)

3.2.*. &-NFA - Regular Expression

Lemma: For any £-NFA A, there exists an -NFA A’
with L(A)=L(A’) such that
1. A’ contains exactly one accepting state, and there
are no transitions from the accepting state, and

2. for any state g, there is a path from the initial state,
and there Is a path to the accepting state.

Proof:

2. The other states are redundant, or they have
nothing to accept the language. Hence we can
remove them.

32/46

(
3.2.*%. &-NFA -
£-NFA A
£-NFA A’
1 1
2 q

3.1,3.2)

L(A)=L(A)

3. Regular Expression:
(Text 3.1,3.2)

3. 2. *. &-NFA - Regular Expression

Lemma: For any £-NFA A, there exists an -NFA A’
with L(A)=L(A’) such that
1. A’ contains exactly one accepting state, and there
are no transitions from the accepting state, and

2. for any state q, there is a path from the initial state,
and there Is a path to the accepting state.

[Idea for Proof] We modify the automaton to translate from several
accepting states to the unique accepting state by an £-move.

=)

34/46

(3132

3.2.*. &-NFA -
=-NFA A L(A)=L(E)

e e

LA=® E=d
L(A)=D A

1. 1
2. g g G

35/46

3. Regular Expression:
(Text 3.1,3.2)

3.2.*. &-NFA - Regular Expression
Theorem: For any given £-NFA A, there iIs a regular

expression E such that L(A)=L(E).

Proof:

When L(A)=d, we have E=P. SSHe

Thus we assume that L(A)==d. We moreover suppose that A
satisfies the following conditions by Lemma.

A contains exactly one accepting state, and there are no
transitions from the accepting state, and

for any state g, there is a path from the initial state, and there
IS a path to the accepting state.

36/46

(3132

3.2.*. &-NFA -
=-NFA A L(A)=L(E)

3. :
(3.1,3.2)

3.2.*. &-NFA - Regular Expression

Theorem: For any given £-NFA A, there is a regular
expression E such that L(A)=L(E).

Proof:
Idea of the proof:

— We construct the reqular expression as the label
on an edge of A, and

— We remove states step by step.

3.2.*. &-NFA -
- =-NFA A L(A)=L(E) E

T1(.):
(E,+E,+...+E)
X)@
Ek
T2: (): q q 1
E F*E
F 1 ‘ 1 .
T3: (q):

39/46

3. 2. *. &-NFA - Regular Expression

Theorem: For any given £-NFA A, there iIs a regular
expression E such that L(A)=L(E).

Proof:

T1 (Remove multi-edges): Unify several edges with the
same endpoints

E
e e
Ek

T2: (Remove self-loops): When one loop from the node g to
itself

F@E<: - oz:
E, F*E,

T3: (Remove the node q): £0/46

L(A)=L(E)

41/46

3. 2. *. &-NFA - Regular Expression

Theorem: For any given £-NFA A, there Is a regular
expression E such that L(A)=L(E).

Proof:

T3: (Remove the node q):
— q Is neither the initial state nor the accepting state
— no transitions from q to g

42/46

3. :
(3.1,3.2)

: =-NFA A L(A)=L(E) E
: =-NFA A
1. T)
2. T2)
3. T3()
A ()

NFA A’

43/46

3. Regular Expression:
(Text 3.1,3.2)

3. 2. *. &-NFA - Regular Expression

Theorem: For any given £-NFA A, there is a regular expression E
such that L(A)=L(E).

Proof. For any given £-NFA A,
1. apply T1(Remove multi-edges) as possible as you can,
2. apply T2(Remove self-loops) as possible as you can, and
3. apply T3(Remove a node).

Then a state in A (except initial and accepting states) is removed.
Repeating this process, we have an NFA A’ consisting of two

states:
@

Then the label E of the unique edge gives us the regular expression.

44/46

~0 e

(3 . 1 y 3 . 2) ~0 (a*b*"'a*C*)#‘d_*,‘

a*b*

45/46

~o-! =

3. Regular Expression:
(TeXt 3 . 1 y 3 . 2) \A.(a*b*"'a*C*)#.&_,‘

3. 2. *. &-NFA - Regular Expression **

.
d*

1. O0ormore ‘a’s,
2. [0 or more ‘b’s] or [0 or more ‘c’s], and
3. 0ormore ‘ds. a*bh*

a*&E=a*

46/46

() (1)

Information

 Today’s Office Hour: Lecture
(5) Regular set (1)

47146

