3. Regular Expression:
(Text 3.1,3.2)

3.1. Regular Expression

— Regular Expression describes a set of words (=language)
by finite characters
Ex (01)* ... words repeating ‘01’
0(0+1)* ... repeating ‘0’ or ‘1" after O
le.
(01)* = {£,01,0101,010101,01010101,...}
0(0+1)*={0,00,01,000,001,010,011,0000,...}
— Familiar if you are UNIX-user...grep, emacs, awk, perl,

— So-called ‘Wild-card’ in filenames on Windows

2/46

3. Regular Expression:
(Text 3.1,3.2)

3.1. Brief explanation

— A character and string is as is:
*«a- {a}
« ab - {ab}

- '=0R
« ab+a - {ab,a}

— ‘() makes a group

— “* means repetition 0 times or more
« (ab)* - {=, ab, abab, ababab,...}

An complicated example:
((ab)*c)+(a*)
- {&, a,c, aa, aaa, abc, aaaa, aaaaa, ababc,... }

4/46

3.1.
- () =
1
(01)* ... 01
00+1)* ... 0 01
(01)* = {£,01,0101,010101,01010101,...}
0(0+1)*={0,00,01,000,001,010,011,0000,...}
— UNIX ...grep, emacs, awk, perl, ...
— Windows
1/46
3. :
(3.1,3.2)
3.1
. a - {a}
« ab - {ab}
« ab+a - {ab,a}
-0
— * 0
* (ab)* -~ {=, ab, abab, ababab,...}
((ab)*c)+(a*)
- {&€, a, c, aa, aaa, abhc, aaaa, aaaaa, ababc,... }
3/46
3. :
(3.1,3.2)
3.1.1.
1. (union): L, M L M
L M
:{AB,C} {ab,c}={ab,cABC}
2. (concatenation): LM LM(
L M)
- : {AB,CHa,b,c} = {ABa, ABb, ABc, Ca, Cb, Cc}
3. (closure): L L* L 0

- : {ab,c}*={&€,a,b,c,aa,ab,ac,ba,bb,bc,cach,cc,aaa,...}

5146

3. Regular Expression:
(Text 3.1,3.2)

3.1.1. Operations over regular expressions

1. TheunionL M contains elementsin L or M.
« Ex:{AB,C} {a b,c}={a b,c AB, C}

2. The concatenation of two languages L and M is denoted
by LM (or L M) is a set of all combinations of two
elements from L and M, respectively.

— Ex: {AB, CH{a, b, c} = {ABa, ABb, ABc, Ca, Ch, Cc}

3. The closure L* of a language L is a set of all
concatenations of any number of elements in L.

— Ex:{ab,c}*={£,a,b,c,aa,ab,ac,ba,bb,bc,ca,ch,cc,aaa,...}

6/46

3. ,
(3.1,3.2)
3.1.1.
2.5. cLL L% LLL L®
. : {a,ab}? = {a,ab}{a,ab} = {aa,aab,aba,abab}
. (L0:={&}, L=, Lk = LKL (k>1)
3.5. 125 L*
L=
i=0
7146
3. :
(3.13.2)
312 =
E L(E)
1. s P L()={} L(P)=D.
2. a a L(a)={a}.
3 E F
1. E+F (LE+F)=L(E) L(F)
2. EF(EF) ;
L(EF) = L(E)L(F)
3. E* JL(E®) = (LE)*
4 (B) i L((B)) = L(E)
9/46
3. :
(3.1,3.2)
3.1.2.
01
1. (1): (a)01 (b)10 (c)
1 (@ (@@o (b)
e (01)* + (10)* + 1(01)* + 0(10)*
2. (2): 01 1 = 0

£ >

3. Regular Expression:
(Text 3.1,3.2)

3.1.1. Operations over regular expressions

2.5. Comment on Concatenation: Sometimes, LL is denoted
by L2, and LLL is denoted by L3, and so on.
« Ex: {aab}?={aab}{a,ab} = {aa,aab,aba,abab}
o Def: LO:={&€}, L1 =L, Lk:= L¥L (k>1)

3.5. Comment on Closure: By 2.5, L* can be defined as
follows. .

8/46

3. Regular Expression:
(Text 3.1,3.2)

3.1.2. Construction of a regular expression =
Definition of a regular expression E and corresponding
language L(E)
1. Two constants £ and @ are regular expressions that represent
L(e)={}, L(DP)=D.
2. Forasymbol a, a is regular expression that represents L(a) = {a}.
3. For two regular expressions E and F,
1. E+FisR.E. which represents L(E+F) =L(E) L(F)
2. EF(or E F)isR.E. which represents L(EF) = L(E)L(F)
3. E*isR.E. which represents L(E*) = (L(E))*
4. (E) is R.E. which represents L((E)) = L(E)

10/46

3. Regular Expression:
(Text 3.1,3.2)

3.1.2. Construction of a regular expression
Ex: A language that is the set of words such that ‘0
and 1 appear alternately’
1. Idea (1): (a) repetition of 01, (b) repetition of 10, (c)
(a) follows after 1, or (d) (b) follows after 0.
o (01)* + (10)* + 1(01)* + 0(10)*

2. Idea (2): add 1 or £ before repetition of 01, and add
0 or £ afterit.
- (1+g)(01))*(0+E)

Different
representations for
the same language

12/46

3. Regular Expressions:
(Text 3.1,3.2)

3.1.2. Priority of the operations

We can omit some ()s if we define the priority of
the operations below:
1. From left to right for the same operations:
abc = (ab)c, atb+c=(a+b)+c
* has top priority: ab*=a(b)*=(ab)*
has the second: a+bc = a+(bc)#(a+b)c
4. +isthe last: at+bc*+d = (a+(b(c*)))+d

w N

14/46

3. Regular Expression:
(Text 3.1,3.2)

3. 2. Finite automata and regular expressions

Goal: Class of languages represented by
regular expressions = Class of languages
accepted by automata

1. For any given regular expression, we can construct
an £-NFA that accepts the same language

2. For any given DFA, we can construct a regular
expression that represents the same language

2'. For any give ...(this is easier)

«£-NFA seems more descriptive
« DFA has simpler structure than NFA

16/46

3. :
(3.1,3.2)
3.1.2.
0
0
1. :abc = (ab)c,
atb+c=(atb)+c
2. * : ab*=a(b)*#(ab)*
3. 2 : a+bc = a+(bc)=(a+b)c
4. + s at+bc*+d = (a+(b(c*)))+d
13/46
3. :
(3.1,3.2)
3.2
1. =-NFA
2. DFA
2. =-NFA
15/46
3. :
(3.1,3.2)
3.2.3 - &-NFA
1. &, 9, a s L(g)={&}, L(P)=PD, L(a) = {a}.
2 E F
1. E+F JLE+F) =L(E) L(F)
2. ER(EF) : L(EF) = LE)L(F)
3. E* T L(EY) = (L)
4. (B) i L(E) = L(E)
£-NFA

17/46

3. Regular Expression:
(Text 3.1,3.2)

3. 2. 3. Regular Expression - £-NFA
From the definition of R.E. and corresponding set
1. Two constants £ and @ are regular expressions that represent
L(e)={&}, L(P)=D.
2. Forasymbol a, a is regular expression that represents L(a) = {a}.
3. For two regular expressions E and F,
1. E+Fis R.E. which represents L(E+F) = L(E) L(F)
2. EF(or E F)is R.E. which represents L(EF) = L(E)L(F)
3. E*is R.E. which represents L(E*) = (L(E))*
4. (E) is R.E. which represents L((E)) = L(E)
we construct an £-NFA accepting the same language.

18/46

3.1,3.2)

3. Regular Expression
(Text 3.1,3.2)

3. 2. 3. Regular Expression — £-NFA

1. &, ®,asymbol aisRE;L(£)={}, L(P)=D, L(a) = {a}.

il

20/46

3. Regular Expression:
(Text 3.1,3.2)

3. 2. 3. Regular Expression - £-NFA
2. ForR.E.EandF,

E+FisRE;L(E+F)=L(E) L(F)

EF (or E F) is R.E.; L(EF) = L(E)L(F)

E* is R.E.; L(E*) = (L(E))*

A ow N R

NFA for E+F

(E) is RE.; L((E)) = L(E)
=7 ol

NFA for F . l = NFA for F =

22146

3.2.3. - &-NFA
1. & 9, a s L(E)={&}, L(P)=D, L(a) = {a}.
o= o
Ca—
19/46
3. :
(3.1,3.2)
3.2.3 - &-NFA
2 E F
1. E+F JLE+F) =L(E) L(F)
2. EF(EF) ; L(EF) = L(E)L(F)
3. E*
4. (E)
[3 @
o ©
21/46
3. :
(3.13.2)
3.2.3 - &-NFA
2 E F
1. E+F LE+F) =LE) L(F)
2. ER(EF) ; L(EF) = LE)L(F)
3. E* L(E*) = (L(E)*
4. (E) L((E)) = L(E)
EF
.E . E [F
=
—2 affe o o
@ ©

3. Regular Expression:
(Text 3.1,3.2)

3. 2. 3. Regular Expression - £-NFA
2. ForRE.EandF,

E+FisRE,;L(E+F)=L(E) L(F)

EF (or E F)is R.E.; L(EF) = L(E)L(F)

E* is R.E.; L(E®) = (L(E))*

(E) is R.E.; L((E)) = L(E)

B oW N e

NFA for EF

NFA for E

o [T o))

NFA for F

24146

3. :
(3.1,3.2)
3.2.3. - &-NFA
2. E F

1. E+F LE+F) =L(E) L(F)
2. ER(EF) : L(EF) = L(E)L(F)
3. E* T L(E®) = (LEY* -
4. (E) y L((E)) = L(E)

E*

25/46

3. Regular Expression:
(Text 3.1,3.2)

3. 2. 3. Regular Expression -~ £-NF.
2. ForRE.EandF,
E+FisRE;L(E+F)=L(E) L(F)
EF (or E F) is R.E.; L(EF) = L(E)L(F)
E*is R.E.; L(E*) = (L(E)*
(E) is R.E.; L((E)) = L(E)

B wN e

NFA E*
NFAE
o sl

26/46

3. Regular Expression:
(Text 3.1,3.2)

3. 2. 3. Regular Expression — £-NFA
Ex R.E. of strings s.t. 0 and 1 appear alternately;

e (1+&)(01)*(0+&)
0
£ £ 1 £ £
’ £ = =
| Tenel Somoly, Lo0tes
0@ o+e 0
E> >
ote oo
®Se . = oy =
01 0/ ™
0 £ 1 £
‘°0—-0—0—0
28/46

3. X
(3.1,3.2)
3.2.3. - &-NFA
01
e | (1+£)(01)*(0+£) .
£ s 1 £ =
. Q E E =
-0 oe o/
) o
050 Of = (01)* *Ef\\
o%ecele =
3. :
(3.1,3.2)
3.2.*. =-NFA -
£-NFAA L(A)=L(A")
£-NFAA
1 1
2 q q

29/46

3. Regular Expression:
(Text 3.1,3.2)

3. 2. *. &-NFA - Regular Expression
Lemma: For any £-NFA A, there exists an £-NFA A’
with L(A)=L(A") such that
1. A’ contains exactly one accepting state, and there
are no transitions from the accepting state, and

2. forany state g, there is a path from the initial state,
and there is a path to the accepting state.

30/46

3. :
(3.1,3.2)

3. Regular Expression:
(Text 3.1,3.2)

3. 2.*. &-NFA - Regular Expression
Lemma: For any £-NFA A, there exists an £-NFA A’
with L(A)=L(A") such that
1. A’ contains exactly one accepting state, and there
are no transitions from the accepting state, and
2. for any state g, there is a path from the initial state,
and there is a path to the accepting state.
Proof:
2. The other states are redundant, or they have

nothing to accept the language. Hence we can
remove them.

32046

3. Regular Expression:
(Text 3.1,3.2)

3. 2.*. &-NFA - Regular Expression
Lemma: For any £-NFA A, there exists an £-NFA A’
with L(A)=L(A’) such that
1. A’ contains exactly one accepting state, and there
are no transitions from the accepting state, and

2. for any state g, there is a path from the initial state,
and there is a path to the accepting state.

[Idea for Proof] We modify the automaton to translate from several
accepting states to the unique accepting state by an £-move.

- - 34/46

3.2.* =-NFA-
=-NFAA L(A)=L(A")
e-NFAA’
1. 1
2. g q
q
2.
31/46
3. :
(3.1,3.2)
3.2.*. =-NFA -
£-NFAA L(A)=L(A")
e-NFAA
1 1
2 q q
q
[1 e-
)
33/46
3. :
(3.1,3.2)
3.2.* &-NFA-
: £-NFAA L(A)=L(E)
E

. L(Ay=D A
1. 1
2 q q q

35/46

3. Regular Expression:
(Text 3.1,3.2)

3.2.*. &-NFA - Regular Expression

Theorem: For any given £-NFA A, there is a regular
expression E such that L(A)=L(E).

Proof:

When L(A)=®, we have E=®. S
Thus we assume that L(A)z=®. We moreover suppose that A
satisfies the following conditions by Lemma.

1. Acontains exactly one accepting state, and there are no
transitions from the accepting state, and

2. for any state q, there is a path from the initial state, and there
is a path to the accepting state.

36/46

3. :
(3.13.2)
3.2.* &-NFA-
=-NFAA L(A)=L(E)

-

- 4a q

3.2.*. &-NFA-
=-NFAA L(A)=L(E) E
T1(.):
q (E;+E,+...+E)
S ® ®
E¢
T2: (): q q 1
Eq F*E,
T3: (q):
39/46
3.2.*. &-NFA -
£-NFAA L(A)=L(E) E
T3:(q):
- q

41/46

3. :
(3.1,3.2)

3. 2. *. &-NFA - Regular Expression
Theorem: For any given £-NFA A, there is a regular
expression E such that L(A)=L(E).

Proof:
Idea of the proof:
— We construct the regular expression as the label

on an edge of A, and
— We remove states step by step.

38/46

3. 2. *. &-NFA - Regular Expression

Theorem: For any given £-NFA A, there is a regular
expression E such that L(A)=L(E).

Proof:
T1 (Remove multi-edges): Unify several edges with the
same endpoints

E
‘ (EL+E+...+E)
S S .
Ey

T2: (Remove self-loops): When one loop from the node q to

itself .
E, F*E,

T3: (Remove the node q): 4016

3. 2. *. &-NFA - Regular Expression
Theorem: For any given £-NFA A, there is a regular
expression E such that L(A)=L(E).

Proof:

T3: (Remove the node q):
— qis neither the initial state nor the accepting state

— no transitions from q to q

F.E
ek 42146

3. :
(3.1,3.2)

3. Regular Expression:
(Text 3.1,3.2)

3.2.*. &-NFA - Regular Expression

Theorem: For any given £-NFA A, there is a regular expression E
such that L(A)=L(E).

Proof: For any given £-NFA A,
1. apply T1(Remove multi-edges) as possible as you can,
2. apply T2(Remove self-loops) as possible as you can, and
3. apply T3(Remove a node).

Then a state in A (except initial and accepting states) is removed.
Repeating this process, we have an NFA A’ consisting of two

states:
\. E .

Then the label E of the unique edge gives us the regular expression.
44146

3.2.*. &-NFA-
: e-NFAA L(A)=L(E) E
: =-NFAA
1 TI()
2. T2()
3. T3()
A ()
NFA A
*——@
E
43/46
. (a*b*+a*c*)d*
3. : © ®
(31,32) \.Ml.d_*‘
3.2.*. &-NFA- arb*
: axc* d*

45/46

®))

Information

e Today’s Office Hour: Lecture
(5) Regular set (1)

47/46

3. Regular Expression; @ e
(Text 3.1,3.2)

~ .(a*b*+a*c* .d* ®
3.2.*. &-NFA - Regular Expression axb*

a*
1. Oormore ‘a’s,

2. [0or more ‘b’s] or [0 or more ‘c’s], and
3. Oormore‘ds.

a*b*

46/46

