- 正則表現(または正規表現)とは、文字列の集合(=言語) を有限個の記号列で表現する方法の1つ

例: (01)* ...「01を繰り返す文字列」 0(0+1)* ...「0の後に0か1が繰り返す文字列」 つまり **(01**)* = { ,01,0101,010101,01010101,...} $0(0+1)*=\{0,00,01,000,001,010,011,0000,\dots\}$

- UNIX系の人にはおなじみ...grep, emacs, awk, perl, ...
- Windows系の人にも...ファイル名のワイルドカードなど

3. Regular Expression: (Text 3.1,3.2)

3.1. Regular Expression

 Regular Expression describes a set of words (=language) by finite characters

Ex: (01)* ... words repeating '01' 0(0+1)* ... repeating '0' or '1' after 0 $(\mathbf{01})^* = \{ ,01,0101,010101,01010101,... \}$ $\boldsymbol{0}(\boldsymbol{0}{+}\boldsymbol{1})^*{=}\{0,\!00,\!01,\!000,\!001,\!010,\!011,\!0000,\dots\}$

- Familiar if you are UNIX-user...grep, emacs, awk, perl,
- So-called 'Wild-card' in filenames on Windows

3. 正則表現: (テキスト3.1,3.2)

- 3.1. 正則表現の直感的な定義と意味
 - 文字や文字列はそのまま解釈:
 - a {a} ab {ab}
 - 「 + 」は「または」の意味:
 - ab+a {ab,a} 「()」はグループ化
 - 「*」は「0回以上の繰り返し」の意味
 - (ab)* { , ab, abab, ababab,...}

ちょっと複雑な例:

((ab)*c)+(a*)

 $\{$, a, c, aa, aaa, abc, aaaa, aaaaa, ababc,... $\}$

3. Regular Expression: (Text 3.1,3.2)

3.1. Brief explanation

- A character and string is as is:

• **a** {a} • **ab** {ab}

- ' + ' = OR

• **ab**+**a** {*ab*,*a*}

- '()' makes a group

- '*' means repetition 0 times or more

• (ab)* { , ab, abab, ababab,...}

An complicated example:

((ab)*c)+(a*)

 $\{\quad,a,c,aa,aaa,abc,aaaa,aaaaa,ababc,\dots\}$

3. 正則表現: (テキスト3.1,3.2)

3.1.1. 正則表現の演算

- 1. 和集合(union): 二つの言語 L, M の和集合L Mは、 LかMのどちらかに含まれる要素の集合.
 - $\{AB,C\}$ $\{a,b,c\} = \{a,b,c,AB,C\}$
- 2. 連接(concatenation): 二つの言語L,Mの連接LM(また は $L\cdot M$)は、それぞれの要素を一つづつとってつなげ たものの集合
 - 例: $\{AB,C\}\{a,b,c\} = \{ABa, ABb, ABc, Ca, Cb, Cc\}$
- 3. 閉包(closure): ある言語Lの閉包L*は、Lの要素を0個 以上連接したものの集合
 - 例: $\{a,b,c\}$ *= $\{$,a,b,c,aa,ab,ac,ba,bb,bc,ca,cb,cc,aaa,... $\}$

3. Regular Expression: (Text 3.1,3.2)

3.1.1. Operations over regular expressions

- 1. The union L M contains elements in L or M.
 - Ex: $\{AB, C\}$ $\{a, b, c\} = \{a, b, c, AB, C\}$
- 2. The concatenation of two languages L and M is denoted by LM (or $L \cdot M$) is a set of all combinations of two elements from L and M, respectively.
 - Ex: $\{AB, C\}\{a, b, c\} = \{ABa, ABb, ABc, Ca, Cb, Cc\}$
- 3. The closure L^* of a language L is a set of all concatenations of any number of elements in L.
 - Ex: $\{a,b,c\}$ *= $\{$, $a,b,c,aa,ab,ac,ba,bb,bc,ca,cb,cc,aaa,...<math>\}$

3.1.1. 正則表現の演算

- 2.5. 言語の連接の補足: LLはL², LLLはL³と書くことがある。
 - $\{a,ab\}^2 = \{a,ab\}\{a,ab\} = \{aa,aab,aba,abab\}$
 - 定義: $L^0 := \{ \}, L^1 := L, L^k := L^{k-1}L(k>1)$
- 3.5. 言語の閉包の補足: 2.5 より、L* は以下の定義と同値。

$$L^* := \bigcup_{i=0}^{\infty} L^i$$

3. Regular Expression: (Text 3.1,3.2)

3.1.1. Operations over regular expressions

- 2.5. Comment on Concatenation: Sometimes, LL is denoted by L^2 , and LLL is denoted by L^3 , and so on.
 - $\bullet \qquad \text{Ex: } \{a,ab\}^2 = \{a,ab\}\{a,ab\} = \{aa,aab,aba,abab\}$
 - Def: $L^0 := \{ \}, L^1 := L, L^k := L^{k-1}L (k>1)$
- 3.5. Comment on Closure: By 2.5, L^* can be defined as

$$L^* := \bigcup_{i=0}^{\infty} L^i$$

3. 正則表現: (テキスト3.1,3.2)

3.1.2. 正則表現の構成

正則表現 E とそれが表現する言語 L(E) の定義

- 1. 定数 と は正則表現で、L()={ },L()=
- 記号 a に対して、a は正則表現で、L(a) = {a}.
- E と F が正則表現のとき、
 - 1. *E*+*F* は正則表現。定義される言語; *L*(*E*+*F*) = *L*(*E*) *L*(*F*)
 - 2. EF(または $E \cdot F$)は正則表現。定義される言語; L(EF) = L(E)L(F)
 - 3. E^* は正則表現。定義される言語; $L(E^*) = (L(E))^*$
 - 4. (E)は正則表現。定義される言語; L((E)) = L(E)

3. Regular Expression: (Text 3.1,3.2)

3.1.2. Construction of a regular expression

Definition of a regular expression E and corresponding language L(E)

- 1. Two constants and are regular expressions that represent
- 2. For a symbol a, \mathbf{a} is regular expression that represents $L(\mathbf{a}) = \{a\}$.
- 3. For two regular expressions E and F,
 - E+F is R.E. which represents L(E+F) = L(E) L(F)
 - 2. EF(or $E \cdot F$) is R.E. which represents L(EF) = L(E)L(F)
 - E^* is R.E. which represents $L(E^*) = (L(E))^*$
 - 4. (E) is R.E. which represents L((E)) = L(E)

3. 正則表現: (テキスト3.1,3.2)

3.1.2. 正則表現の構成

例:「0と1が交互に現れる文字列」という言語

- 1. 発想(1): (a)01の繰り返しか(b)10の繰り返しか(c) 1のあとに(a) か(d) 0のあとに(b)
 - $\bullet \quad (01)^* + (10)^* + 1(01)^* + 0(10)^*$
- 2. 発想(2): 01の繰り返しの前に1か を追加、後に0か

- (1+)(01)*(0+)

3. Regular Expression: (Text 3.1,3.2)

3.1.2. Construction of a regular expression

Ex: A language that is the set of words such that '0 and 1 appear alternately

- 1. Idea (1): (a) repetition of 01, (b) repetition of 10, (c) (a) follows after 1, or (d) (b) follows after 0. • (01)* + (10)* + 1(01)* + 0(10)*
- 2. Idea (2): add 1 or before repetition of 01, and add 0 or after it.
 - (1+)(01)*(0+

representations for the same language

3.1.2. 正則表現の演算順序

すべて()で明記してもよいが、<u>優先順位</u>を定義すれば、()は適宜省略できる。

- 同じ演算は左から右: abc = (ab)c, a+b+c=(a+b)+c
- 2. *は最優先: ab*=a(b)* (ab)*
- 3. ・は2番目: $\mathbf{a}+\mathbf{bc} = \mathbf{a}+(\mathbf{bc})$ ($\mathbf{a}+\mathbf{b}$)c
- 4. +は最後: $a+bc^*+d = (a+(b(c^*)))+d$

13/4

3. Regular Expressions: (Text 3.1,3.2)

3.1.2. Priority of the operations

We can omit some ()s if we define the priority of the operations below:

- 1. From left to right for the same operations: abc = (ab)c, a+b+c=(a+b)+c
- 2. * has top priority: ab*=a(b)* (ab)*
- 3. has the second: $\mathbf{a}+\mathbf{bc} = \mathbf{a}+(\mathbf{bc})$ $(\mathbf{a}+\mathbf{b})\mathbf{c}$
- 4. + is the last: $\mathbf{a} + \mathbf{bc} + \mathbf{d} = (\mathbf{a} + (\mathbf{b(c^*)})) + \mathbf{d}$

14/46

3. 正則表現: (テキスト3.1,3.2)

3.2. 有限オートマトンと正則表現

- ゴール: 正則表現で表現できる言語 = オートマトンで受理できる言語
 - 1. 与えられた正則表現から、 -NFAが構成できること
 - 2. 与えられたDFAから正則表現が構成できること
 - 2'. 与えられた -NFAから正則表現が構成できること

- NFAは(見かけ上)表現力が高い- DFAは構成要素が(見かけ上)少ない

15/4

3. Regular Expression: (Text 3.1,3.2)

3. 2. Finite automata and regular expressions

Goal: Class of languages represented by regular expressions = Class of languages accepted by automata

- For any given regular expression, we can construct an -NFA that accepts the same language
- 2. For any given DFA, we can construct a regular expression that represents the same language
- 2'. For any gives
- FA, ...(this is easier)
- -NFA seems more descriptive
 DFA has simpler structure than NFA

16/4

3. 正則表現: (テキスト3.1,3.2)

3. 2. 3. 正則表現 -NFA

正則表現とそれが表現する言語の定義

- 1. , 記号 a は正則表現; $L(\)=\{\ \}, L(\)=\ , L(\mathbf{a})=\{a\}.$
- 正則表現 E と F に対し、
 - 1. E+F は正則表現; L(E+F) = L(E) L(F)
 - EF(または $E \cdot F$)は正則表現; L(EF) = L(E)L(F)
 - E*は正則表現; L(E*) = (L(E))*
 (E)は正則表現; L((E)) = L(E)
- から直接 _-NFAを構成する。

受理状態が1つしかない

17/46

3. Regular Expression: (Text 3.1,3.2)

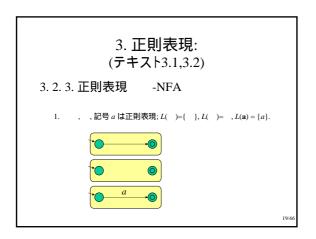
3. 2. 3. Regular Expression -NFA

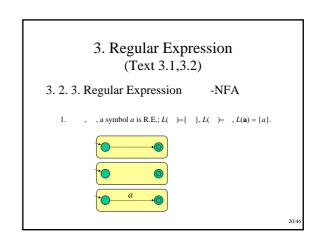
From the definition of R.E. and corresponding set

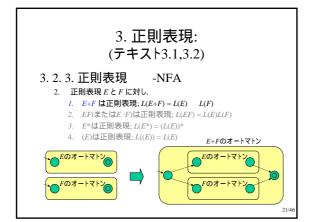
- 1. Two constants and are regular expressions that represent $L(\)=\{\ \}, L(\)=\ .$
- 2. For a symbol a, \mathbf{a} is regular expression that represents $L(\mathbf{a}) = \{a\}$.
- 3. For two regular expressions E and F,
 - 1. E+F is R.E. which represents L(E+F) = L(E) L(F)
 - 2. EF(or $E \cdot F$) is R.E. which represents L(EF) = L(E)L(F)
 - 3. E^* is R.E. which represents $L(E^*) = (L(E))^*$
- 4. (*E*) is R.E. which represents L((E)) = L(E) we construct an -NFA accepting the same language.

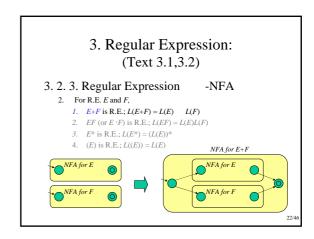
with one accepting state

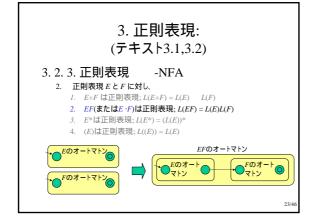
18/4

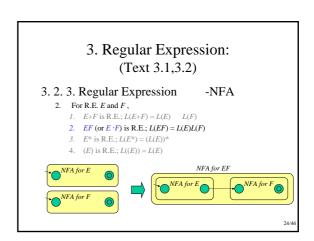


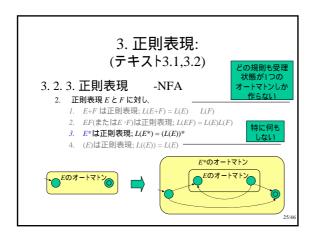


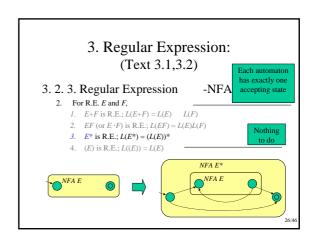


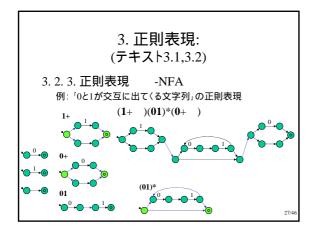


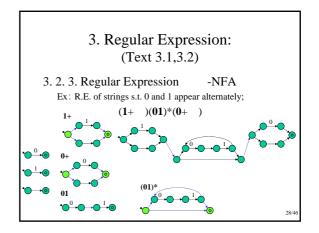












3.2.*. -NFA 正則表現

補題: 任意の -NFA Aに対し、L(A)=L(A')で、以下の条件を満たす -NFA A'が存在する。

- 1. 受理状態は1つで、受理状態からの遷移はない
- 2. 任意の状態 q に対し、初期状態から q への遷移 と、q から受理状態への遷移が存在する

(Text 3.1,3.2)

3. Regular Expression:

3. 2. *. -NFA Regular Expression

Lemma: For any -NFA A, there exists an -NFA A' with L(A)=L(A') such that

- 1. A'contains exactly one accepting state, and there are no transitions from the accepting state, and
- 2. for any state q, there is a path from the initial state, and there is a path to the accepting state.

3.2.*. -NFA 正則表現

補題: 任意の -NFA Aに対し、L(A)=L(A')で、以下の条件を満たす -NFA A'が存在する。

- 1. 受理状態は1つで、受理状態からの遷移はない
- 2. 任意の状態 q に対し、初期状態から q への遷移と、q から受理状態への遷移が存在する

証明:

2. 初期状態から到達できない状態と、受理状態に 到達できない状態は受理する言語とは無関係な ので、取り除いてよい。

31/46

3. Regular Expression: (Text 3.1,3.2)

3. 2. *. -NFA Regular Expression

Lemma: For any -NFA A, there exists an -NFA A' with L(A)=L(A)' such that

- A' contains exactly one accepting state, and there are no transitions from the accepting state, and
- 2. for any state q, there is a path from the initial state, and there is a path to the accepting state.

Proof:

The other states are redundant, or they have nothing to accept the language. Hence we can remove them.

32/46

3. 正則表現: (テキスト3.1,3.2)

3.2.*. -NFA 正則表現

補題: 任意の -NFA Aに対し、L(A)=L(A')で、以下の条件を満たす -NFA A'が存在する。

- 1. 受理状態は1つで、受理状態からの遷移はない
- 2. 任意の状態 q に対し、初期状態から q への遷移と、q から受理状態への遷移が存在する

説明: [P7+7] <u>複数の受理状態</u>から、<u>単一の受理状態</u>へと -動作で遷移するように与えられたオートマトンを「改造」する。

33/46

3. Regular Expression: (Text 3.1,3.2)

3. 2. *. -NFA Regular Expression

Lemma: For any -NFA A, there exists an -NFA A' with L(A)=L(A') such that

- 1. A' contains exactly one accepting state, and there are no transitions from the accepting state, and
- 2. for any state q, there is a path from the initial state, and there is a path to the accepting state.

[Idea for Proof] We *modify* the automaton to translate from <u>several accepting states</u> to the <u>unique accepting state</u> by an \quad -move.

3. Regular Expression:

(Text 3.1,3.2)

3. 2. *. -NFA Regular Expression

Theorem: For any given -NFA A, there is a regular

expression E such that L(A)=L(E).

34/4

3. 正則表現: (テキスト3.1,3.2)

3.2.*. -NFA 正則表現

定理: 任意の -NFA A に対し、L(A)=L(E) となる正則表現 E が存在する。

証明:

- L(A)= なら、E=
- 以下ではL(A) と仮定する。Aは以下の補題の条件を
 - 満たすとする。
 - 1. 受理状態は1つで、受理状態からの遷移はない
 - 2. 任意の状態 q に対し、初期状態から q への遷移と、q から受理状態への遷移が存在する

:

- When L(A)= , we have E=
 Thus we assume that L(A) . We moreover suppose that A satisfies the following conditions by Lemma.
- A contains exactly one accepting state, and there are no transitions from the accepting state, and
- 2. for any state q, there is a path from the initial state, and there is a path to the accepting state.

36/4

3.2.*. -NFA 正則表現

定理: 任意の -NFA A に対し、L(A)=L(E) となる正則表 現 *E* が存在する。

証明:

証明のアイデア:

- 辺のラベルに正規表現を構築していく
- 頂点を順番に削除していく

[注意] 構築途中で現れる"NFA"は正確にはNFAではない NFAでは辺のラベルはアルファベット1文字しか許されていない

3. 正則表現: (テキスト3.1,3.2)

3. 2. *. -NFA Regular Expression

Theorem: For any given -NFA A, there is a regular expression E such that L(A)=L(E).

Proof:

Idea of the proof:

- We construct the regular expression as the label on an edge of A, and
- We remove states step by step.

Note] The ``NFA" during the process is not real NFA Only one alphabet is allowed as a label on an edge.

3.2.*. -NFA 正則表現

定理: 任意の -NFA A に対し、L(A)=L(E) となる正則表現 E

証明:

T1 (多重辺の削除): 同じ端点を持つ複数の辺の一本化

T2: (ループの除去): 頂点qからqへの遷移が1本のとき

T3: (頂点 q の削除):

3. 2. *. -NFA Regular Expression

Theorem: For any given -NFA A, there is a regular expression E such that L(A)=L(E).

Proof:

T1 (Remove multi-edges): Unify several edges with the same endpoints



T2: (Remove self-loops): When one loop from the node \boldsymbol{q} to

T3: (Remove the node q):

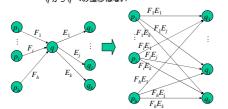
3.2.*. -NFA 正則表現

定理: 任意の -NFA A に対し、L(A)=L(E) となる正則表現 Eが存在する。

証明:

T3: (頂点 q の削除):

- q は初期状態、受理状態でない
- qからqへの遷移はない



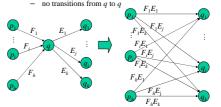
-NFA Regular Expression

Theorem: For any given -NFA A, there is a regular expression E such that L(A)=L(E).

Proof:

T3: (Remove the node q):

- q is neither the initial state nor the accepting state
- no transitions from q to q



. *. -NFA 正則表現 定理: 任意の -NFA A に対し、 *L(A)=L(E)* となる正則表現 *E* が存在する。

証明: 与えられた -NFA Aに対し、

明: 与えられた - NFA Aに対り、 1. T1(多重辺の除去)を可能な限り適用 2. T2(ループの除去)を可能な限り適用 3. T3(頂点の削除)を適用 すると、Aの初期状態と(唯一の)受理状態以外の状態が一つ減 る。これを繰り返すと、初期状態と受理状態だけのNFA A'

Е

ができる。このときの辺のラベルEが求める正規表現となる。

3. Regular Expression: (Text 3.1,3.2)

3. 2. *. -NFA Regular Expression

Theorem: For any given -NFA A, there is a regular expression E such that L(A)=L(E).

Proof: For any given -NFA A,

on: For any given -NFA A;

1. apply T1(Remove multi-edges) as possible as you can,

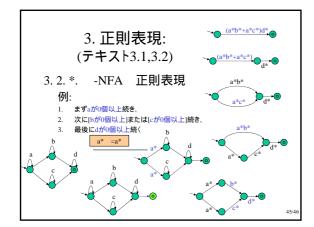
2. apply T2(Remove self-loops) as possible as you can, and

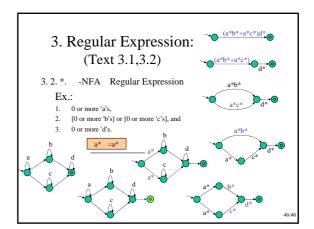
3. apply T3(Remove a node).

Then a state in A (except initial and accepting states) is removed.

Repeating this process, we have an NFA A' consisting of two states:

Then the label ${\cal E}$ of the unique edge gives us the regular expression.





お知らせ

- 今日のオフィスアワーは講義
 - (5) 正則集合(1)

Information

Today's Office Hour: Lecture (5) Regular set (1)