4. 正則言語の性質(1): (テキスト4.1,4.2)

- 4.1. 言語が正則でないことの証明
 - 有限オートマトンは状態が有限個しかない。
 - →「有限個の状態しかないと区別できないもの」は区別できない。

(典型的な)鳩ノ巣原理(Pigeon Hole Principle): n+1羽(以上)の鳩が n 個の巣に入っている。 このとき、どこかの巣には鳩が2羽以上入っている。

1/32

4. Regular Languages (1): (Text 4.1,4.2)

- 4.1. Non-regular language
 - Finite automaton has finite states.
 - → It cannot distinguish infinite objects

(Typical) Pigeon Hole Principle:

There are n+1 or more pigeons are in n nests. Then, there are at least two pigeons in some nest.

2/32

4. 正則言語の性質(1): (テキスト4.1,4.2)

4.1. 言語が正則でないことの証明

例: 言語 $L=\{0^n1^n \mid n \ge 1\}$

- n はどんなに大きくてもよい
- DFA A が m 状態なら、n>m のときに 0"1" に関して A のふるまいは...?

3/32

4. Regular Languages (1): (Text 4.1,4.2)

4.1. Non-regular language

Ex: Language $L=\{0^n1^n \mid n \ge 1\}$

- n can be any integer
- When DFA A has m states, what if the transition of A on the input 0ⁿ1ⁿ for n>m...?

4/3

例: 言語 L={0ⁿ1ⁿ | n≥1} は正則ではない。

証明: L が正則であったと仮定して、矛盾を導く。

L は正則なので、L を受理する DFA A が存在する。A の状態集合を q_1,q_2,\dots,q_m とする(mは有限)。n=m+1のとき、鳩ノ巣原理から、

 $0,00,0^3,0^4,\dots,0^n$

の中には、「Aが遷移したときに同じ状態になる、長さの異なるペア」が存在する。これらを $0^{i},0^{i}$ とおく。つまりAは $0^{i},0^{i}$ のどちらを読み込んだときも同じ状態 qになる。

したがってLは正則ではない。

Ex: The language $L=\{0^n1^n\mid n\ge 1\}$ is not a regular language.

Proof: To derive contradictions, we assume that L is regular. Since L is regular, there is a DFA A accepting L. Let q_1,q_2,\ldots,q_m be the set of states (finite m). Suppose n=m+1. Then, by the pigeon hole principle, among the inputs $0,00,0^3,0^4,\ldots,0^n$,

there is a pair $0^i, 0^j$ with $i \neq j$ such that A translates to the same state, say q.

Now, consider the input $0^i 1^j$. Then, since $i \neq j$, that is not in L. However, A cannot distinguish $0^i 0^i \not\in L$ with $0^i 1^j \in L$. Therefore, A has to accept both of them, or reject both of them. This contradicts that A accepts the language L.

Hence, L is not a regular language.

4. 正則言語の性質(1) (テキスト4.1,4.2)

ある言語が正 示すのに使う 標準的な補題

4.1. 言語が正則でないことの証明 』

正則言語に対する反復補題(Pumping Lemma):

- 正則言語 Lに対し、以下の条件を満たす定数 n が存 在する: $|w| \ge n$ を満たす任意の文字列 $w \in L$ は、次の 条件を満たす3個の部分列w=xyzに分解できる。
 - y ≠ ε
 - 2. $|xy| \leq n$
 - 3. すべての $k \ge 0$ に対し、 $xy^kz \in L$

4. Regular Languages (1 (Text 4.1, 4.2)

Basic lemma to language is not regular.

4.1. Non-regular language

Pumping Lemma for a regular language:

- For any regular language L, there is a constant n that satisfies the following condition: Any string $w \in L$ with $|w| \ge n$ can be decomposed to three substrings w=xyz.
 - 1. $y \neq \varepsilon$
 - 2. $|xy| \leq n$
 - 3. For all $k \ge 0$, $xy^k z \in L$

4.1. 言語が正則でないことの証明

反復補題(Pumping Lemma):

- 正則言語Lに対し、以下の条件を満たす定数nが存在 する: $|w| \ge n$ を満たす任意の文字列 $w \in L$ は、次の条件 を満たす3個の部分列 w= xyz に分解できる。
 - (1) $y \neq \varepsilon$ (2) $|xy| \le n$ (3) $xy^k z \in L$ ($k \ge 0$)

[証明] Lは正則言語なので、L(A)=LであるDFA Aが 存在する。A の状態数をnとする。

長さ n 以上の L に属する任意の文字列 $w=a_1a_2...a_m$ を考える。 $(m \ge n)$

A は文字列 $a_1a_2...a_i$ を処理したあと、状態 p_i に なるとする。(初期状態を q_0 とすると $p_0=q_0$)

4.1. Non-regular Languages

Pumping Lemma:

- For any regular language L, there is a constant n that satisfies the following condition: Any string $w \in L$ with $|w| \ge n$ can be decomposed to three substrings w=xyz.
 - 1. $y \neq \varepsilon$
 - 2. $|xy| \leq n$
 - 3. For all $k \ge 0$, $xy^k z \in L$

[Proof] Since L is regular, there is a DFA A with L(A)=L. Let *n* be the number of states of *A*.

Let $w=a_1a_2...a_m$ be any word in L with $m \ge n$.

Let p_i be the state of A after reading the substring $a_1 a_2 \dots a_i (p_0 \text{ is the initial state}).$

4.1. 言語が正則でないことの証明

反復補題(Pumping Lemma):

- 正則言語 L に対し、以下の条件を満たす定数 n が存在 する: $|w| \ge n$ を満たす任意の文字列 $w \in L$ は、次の条件 を満たす3個の部分列 w= xyz に分解できる。
 - (1) $y \neq \varepsilon$ (2) $|xy| \leq n$ (3) $xy^k z \in L$ ($k \geq 0$)

[証明] A は文字列 $a_1a_2...a_i$ を処理したあと、状態 p_i になるとする。(初期状態を q_0 とすると $p_0=q_0$) 鳩ノ巣原理により、 p_0,p_1,\ldots,p_m の中には同じ状態 p_i,p_j が存在する。(i < j > U てよい)

- $x = a_1, a_2, ..., a_i$

 $x = \varepsilon \ \forall z = \varepsilon \ \mathsf{t}$ $\bullet \ y = a_{i+1}, \dots, a_j$ 'ありえるがy≠ε • $z = a_{i+1}, \dots, a_m$

と定義するとA は xy^kz ($k \ge 0$)を受理する。

4.1. Non-regular Languages

Pumping Lemma:

- For any regular language L, there is a constant n that satisfies the following condition: Any string $w \in L$ with $|w| \ge n$ can be decomposed to three substrings w = xyz.
 - y ≠ ε
 - 2. $|xy| \leq n$
 - 3. For all $k \ge 0$, $xy^k z \in L$

[Proof] A is in state p_i after reading the substring $a_1a_2...a_i$

By pigeon hole principle, there is the same states p_i, p_i with i < j among p_0, p_1, \dots, p_m . Letting

- $x = a_1, a_2, \dots, a_i$
- $y = a_{i+1},...,a_j$

 $x = \varepsilon / z = \varepsilon$, but \leq we have $y \neq \varepsilon$

• $z = a_{i+1}, \ldots, a_m$ A accepts xy^kz for each $k \ge 0$.

例: 言語 L={0ⁿ1ⁿ | n≥1} は正則ではない。

反復補題による証明: L が正則であると仮定して、矛盾を導く。 L は正則なので、反復補題より、以下の条件を満たす定数 m が存在する: $|w| \ge m$ を満たす任意の文字列 $w \in L$ は、次の条件を満たす3個の部分列 w = xyz に分解できる。

(1) $y \neq \varepsilon$ (2) $|xy| \leq m$ (3) $xy^k z \in L$ ($k \geq 0$)

ここで文字列 $w=0^m1^m$ を考える。wを上記の条件を満たすような部分列xyzに分解する。 $|xy|\le m,\ y\ne \varepsilon$ なので、 $y=0^i$ ($i\ge 1$) となる。

 $xyz = 0^m1^m$ なので $xyyz = 0^{m+i}1^m$ である。反復補題から、 $xyyz \in L$ となるが、実際には $xyyz \in L$ であるので矛盾。 したがって L は正則ではない。

13/32

Ex: Language $L=\{0^n1^n \mid n \ge 1\}$ is not regular.

Proof by Pumping lemma: To derive contradictions, we suppose that *L* is regular. Since *L* is regular, there exists a constant *m* s.t.

any string w with $|w| \ge m$ in L can be decomposed three substrings x, y, z with the following conditions:

(1) $y \neq \varepsilon$ (2) $|xy| \leq m$ (3) $xy^k z \in L$ ($k \geq 0$)

We let $w=0^m1^m$. Then we have three substrings x,y, and z with the above conditions. Since $|xy| \le m$, $y \ne \varepsilon$, we have $y=0^i$ ($i \ge 1$).

Since $xyz = 0^m 1^m$, $xyyz = 0^{m+i} 1^m$. By the pumping lemma, we have $xyyz \in L$. However, $xyyz \notin L$, which is a contradiction.

Hence L is not regular.

14/3

4. 正則言語の性質(1): (テキスト4.1,4.2)

4.2. 正則言語に関する閉包性

- 閉包性…集合/言語が演算に関して閉じ ていること。
 - 正則言語にある操作/演算を加えて、新しい言語を作ったとき、それがまた正則になっているなら、
 - 正則言語はその操作/演算に関して閉じている という。この性質を閉包性という。

15/3

4. Property of Regular Languages (1): (Text 4.1,4.2)

4.2. Closure property of regular languages

- A set is close under an operation:
 - If all regular languages are still regular if they are changed by an operation, we say
 - regular languages are closed under the operation.
 That is called closure property.

16/32

4.2. 正則言語に関する閉包性

- 正則言語は以下の閉包性を持つ。
 - ① 正則言語 L_1, L_2 について $L_1 \cup L_2$ は正則
 - ② L_1, L_2 について $L_1 \cap L_2$ は正則
 - ③ 正則言語の補集合は正則
 - ④ L_1, L_2 について L_1-L_2 は正則
 - ⑤ 正則言語の反転は正則
 - ⑥ L_1 について L_1 * は正則
 - ⑦ L_1, L_2 の連接は正則
 - ⑧正則言語の準同型の像は正則
 - ⑨ 正則言語の逆準同型の像は正則

この授業では範囲外

17/32

4.2. Closure property of regular languages

- Regular languages are closed under the following operations:
 - ① For any R.L. L_1 and L_2 , $L_1 \cup L_2$ is regular
 - ② For any R.L. L_1 and L_2 , $L_1 \cap L_2$ is regular
 - 3 The complement of a regular language is regular
 - 4 For any R.L. L_1 and L_2 , $L_1 L_2$ is regular
 - (5) The reverse of a regular language is regular
 - **6** For any R.L. L_1 , L_1^* is regular
 - \bigcirc The concatenation of R.L.s L_1 and L_2 is regular
 - (8) A homomorphism of a regular language is regular
 - The inverse of homomorphism of a regular language is regular

Out of range

4.2. 正則言語に関する閉包性

① 正則言語 L_1, L_2 について $L_1 \cup L_2$ は正則

[証明手法1] 正則表現を使ったもの

 L_1,L_2 は正則言語なので、 $L(E_1)=L_1,L(E_2)=L_2$ を満たす正則表現が存在する。 $((E_1)+(E_2))$ は正則表現で、かつ明らかに $L(((E_1)+(E_2)))=L_1$ \cup L_2 が成立する。

19/3

4.2. Closure property of R.L.

① For any R.L. L_1 and L_2 , $L_1 \cup L_2$ is regular.

[Proof method 1] Using regular expressions

Since L_1 and L_2 are regular, there are two regular expressions E_1 and E_2 with $L(E_1)=L_1$, $L(E_2)=L_2$. Then $((E_1)+(E_2))$ is also regular expression, and clearly, $L(((E_1)+(E_2)))=L_1 \cup L_2$.

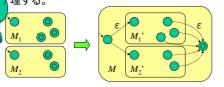
20/32

4.2. 正則言語に関する閉包性

① 正則言語 L_1, L_2 について $L_1 \cup L_2$ は正則

[証明手法2]オートマトンを使ったもの

 L_1,L_2 は正則言語なので、 $L(M_1)=L_1,L(M_2)=L_2$ を満たすDFA M_1,M_2 が存在する。以下に示す方法で構成した ε -NFA Mは明らかに $L_1\cup L_2$ を受理する。



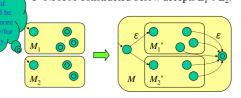
21/32

4.2. Closure property of R.L.

① For any R.L. L_1 and L_2 , $L_1 \cup L_2$ is regular.

[Proof method 2] Using automata

Since L_1 and L_2 are regular languages, there are two DFAs M_1 and M_2 with $L(M_1)=L_1$, $L(M_2)=L_2$. The ε -NFA M constructed below accepts $L_1 \cup L_2$.



22

4.2. 正則言語に関する閉包性

③ 正則言語の補集合は正則

[補集合とは] 言語 L の補集合 ¯={ w | w ∉ L}

[証明](手法2)

言語 L が正則なら、L を受理するDFA $A=(Q,\Sigma,\delta,q,F)$ が存在する。このとき、A の受理状態とそれ以外を入れ替えた DFA $\overline{A}=(Q,\Sigma,\delta,q,Q-F)$ は \overline{L} を受理する。

22/22

4.2. Closure property of R.L.

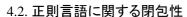
3 The complement of a regular language is regular

[Definition] The complement of a language L:

$$\overline{L} = \{ w \mid w \notin L \}$$

[Proof] (Method 2)

Since L is regular, there is a DFA $A=(Q, \Sigma, \delta, q, F)$ with L(A)=L. Then, the DFA $A'=(Q, \Sigma, \delta, q, Q-F)$, which is obtained by swapping F and Q—F, accepts the complement of L.



② L_1, L_2 について $L_1 \cap L_2$ は正則

[証明手法3]

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ ド・モルガンの定理より、▼ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

$$L_1 \cap L_2 = \overline{\overline{L_1 \cap L_2}} = \overline{\overline{L_1 \cup \overline{L_2}}}$$

したがって L_1, L_2 が正則なら①,③より、 $L_1 \cap L_2$ も正則

4.2. Closure property of R.L.

② For any R.L. L_1 and L_2 , $L_1 \cap L_2$ is regular

[Proof method 3]

By "De Morgan's Law",

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

$$L_1 \cap L_2 = \overline{L_1 \cap L_2} = \overline{L_1 \cup \overline{L_2}}$$

Hence, if L_1 and L_2 are regular, by ①,③, so is $L_1 \cap L_2$.

4.2. 正則言語に関する閉包性

④ L_1, L_2 について L_1-L_2 は正則 $(L_1-L_2=L_1\cap \overline{L}_2$ なので手法3でもOK)

[証明手法4(直積構成法)]

(M1の状態,M2の状態)

- ① L_1, L_2 を受理する DFA を M_1, M_2 とする。
- ② $L_1 L_2$ を受理するDFA Mは、入力を読みながら、 ▶ その入力に対する M₁の状態遷移
 - ▶ その入力に対する M₂の状態遷移

を同時に模倣する。

③ 入力を読み終えた時点で M_1 が受理かつ M_2 が 受理でないなら M は受理。

4.2. Closure property of R.L.

4 For any R.L. L_1 and L_2 , $L_1 - L_2$ is regular (Since $L_1 - L_2 = L_1 \cap \overline{L_2}$, method 3 also works.)

[Proof method 4 (product construction)]

- ① Let M_1 and M_2 be the DFAs that accept L_1, L_2 .
- ② DFA M, which accepts $L_1 L_2$, reads the input and simulates simultaneously
 - \triangleright the transfer of M_1 for the input
- (state of M_1 , state of M_2)
- \triangleright the transfer of M_2 for the input
- 3 When input is end, if M_1 accepts and M_2 does not accept, M accepts.

4.2. 正則言語に関する閉包性

⑤ 正則言語の反転は正則

[定義]

文字列 $w=x_1x_2...x_k$ の反転(Reverse) $w^R=x_k...x_2x_1$ 言語 Lの反転 $L^R=\{w \mid w^R \in L\}$

A: DFA

- Lを受理するDFA A に対し、
 - Aの受理状態を一つにし、
 - ② Aの遷移をすべて逆転し、
 - ③受理状態と初期状態を入れ替えた
- ε -NFA A^R は L^R を受理する。

4.2. Closure property of R.L.

5 The reverse of a regular language is regular

[Definition]

The reverse of a string $w=x_1x_2...x_k$: $w^R=x_k...x_2x_1$.

The reverse of a language $L: L^R = \{ w \mid w^R \subseteq L \}$

[Proof]

For the DFA A accepting L,

- A: DFA A^R : ε -NFA
- ① make the accepting state of A unique, (2) reverse all transfers of A.
- 3 exchange the (unique) accepting state and initial
- ε -NFA A^R accepts L^R .

4.2. 正則言語に関する閉包性

- ⑥ L_1 について L_1 *は正則
- ⑦ L_1, L_2 の連接は正則

 L_1, L_2 を表現する正則表現 E_1, E_2 に対し、

- **6** $(E_1)^*$
- $(E_1)(E_2)$

でOK.

4.2. Closure property of R.L.

For regular languages L_1 and L_2 ,

- **6** L_1^* is regular.
- The concatenation of L_1 and L_2 is regular.

For the regular expressions E_1 and E_2 for L_1 and L_2 ,

- **6** $(E_1)^*$
- $(E_1)(E_2)$

guarantee the claims.