4.3.

(4.3,4.4)
L L= 7? L=>" ?
)L={w]|w 0 } LinL,=d?
L={w|w 0 } L L=P?
W L

) 0000111101011000 L,?
Ll’ L2

) (01)* + (10)* + 1(01)* + 0(10)* = (1+=)(01)*(0+<)?

1/50

4. Regular languages (2):
(Text 4.3,4.4)

4.3. Decision problem for regular languages

Basic problems for a language
1. For given language L, determine if L=?
determine if L=>"7
Ex) L,={ w|w contains even 0Os} L;NnL,=dP?
L,.={w|w contains odd Os} L, L,=d?
2. Given word w, determine if w L or not.
Ex) 0000111101011000 L,?

3. Determine two languages are the same?
Ex) (01)* + (10)* + 1(01)* + 0(10)* = (1+£)(01)*(0+£)?

2/50

4.3.

4.

ol N O

4. (2):

(4.3,4.4)
.
NFA - DFA (): O(n32") <——
DFA - NFA : O(n)
N : O(n34M)
- &-NFA: O(n)
— A
>

3/50

4. Regular languages (2):
(Text 4.3,4.4)

4.3. Decision problem for regular languages

4.3.1. Exchange the representations
1. NFA - DFA takes O(n32") time

2. DFA - NFA takes O(n) time
3. Automaton — Regular expression tpke n34") time
4. Regular expression — £-NFA takes O(n) time

—

>

In the worst case,

Itis crucial that it explosively increases!

polynomial or exponential

4/50

(

4.3,4.4)

L=dP

(2):

(L=b?)

5/50

4. Regular languages (2):
(Text 4.3,4.4)

4.3. Decision problem for regular languages
4.3.2. Check the emptiness (L=d?)

1. Construct an automaton for the regular language.

2. We can determine L= if the automaton can transfer
to the accepting state from the initial state.

3. Solve the ‘reachabile problem on a graph’
it can be solved in O(n?) time.

6/50

4.3.

4.3.3.

=

(

DFA

O(n)

4.3,4.4)

(2):

(w L?)

7150

4. Regular languages (2):
(Text 4.3,4.4)

4.3. Decision problem for regular languages
4.3.3. Membership problem (w L?)

1. Construct an automaton for the regular language.

2. Simulate the transfer for w on the automaton.
It can be solved in O(n) time for the DFA.

8/50

4, (2):

(4.3,4.4)
4.4,
3. L,, L,
) (01)* + (10)* + 1(01)* + 0(10)*
(1+£)(01)*(0+=) ?

[]

> DFA

3 DFA 1
> DFA

3

9/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4, Equivalence and Minimum of an automaton

3. Equivalence of two languages L, and L,

Ex) Do (01)* + (10)* + 1(01)* + 0(10)* and
(1+£)(01)*(0+&) represent the same language?

[Outline]
» There is the minimum DFA.
® The minimum DFA is uniquely determined.
® The minimum DFA can be computed efficiently.
J

We can determine if two reqular lanquages are
equivalent or not.

10/50

4.4,
4.4.1.
DFA

S(p.w)

(

(2):
4.3,4.4)

P, q (equivalent)

- &(q,w)

S—
>

50

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton
4.4.1. Equivalence of two states

Two states p and g Iin DFA are equivalent
For every words w,

S(p,w) IS accepting state = S(q,w) IS accepting

S —
State

They are not necessarily
the same state. 12/50

4, (2):

(4.3,4.4)
4.4,
4.4.1.
DFA P, q (distinguishable)
I O
P4 3 @D
" .
S(p.w), Saw)

13/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton
4.4.1. Equivalence of two states
Two states p and g in a DFA are distinguishable

W
The state arein%t equivalent @ ,@
pq iI) @- @

There exists a word w sus:\h that

one of O(p,w) and OS(g,w) Is accepting state, and
the other Is not.

14/50

(4.3,4.4)

5A(C,5)e X
5A(G,5)§£ X

15/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton
4.4.1. Equivalence of two states
Ex) X={C} denotes the accepting state set

C and G are distinguishable

16/50

4. (2):
(4.3,4.4)

5(A &) e X,0(G,¢) e X
5(A.0) ¢ X,5(G,0) ¢ X
S(AL) e X,8(G,1) ¢ X

5(A,01) e X,5(G,01) ¢ X
1L

A G

17/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton

4.4.1. Equivalence of two states

Ex) X={C} denotes the accepting state set
S(A g) g X,5(G,e) ¢ X
5(A0) ¢ X,5(G,0) ¢ X
S(AD ¢ X,5(G,1) ¢ X
5(A,01) e X,5(G,01) ¢ X

Il

A and G are distinguishable

18/50

4. (2):
(4.3,4.4)

5(Ae) ¢ X, (E, g)gx

5(A1) =5(E,1) =

S(A,0) ¢ X, 5(E, O)eEX

5(A,00) = 5(E,00) =G

5(A,01) = 5(E,01) = C
1L

A E

19/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton

4.4.1. Equivalence of two states

Ex) X={C} denotes the accepting state set
5(A5)¢X 5(E g)ezx
5(A 1) = 5(E 1) =
5(AO)¢X 5(E O)eEX
5(A,00) = 5(E,00) =G
5(A,01) = 5(E,01) = C

Il

A and E are equivalent

20/50

4. (2):
(4.3,4.4)

4.4,
4.4.1.

(Table-filling algorithm)

@
1. P g
{p.a} S
2. P, q a r=0(p,a),
s=(q,a) {r,s} {p.q}

3. 2

21/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4, Equivalence and Minimum of an automaton

4.4.1. Equivalence of two states
Table-filling algorithm that finds all equivalence pairs

1. If pis accepting state and q is not, they are distinguishable.

2. For two states p, g and an input alphabet a, let r=(p,a) and
s=A(q,a). Then, p and g are distinguishable if r and s are
distinguishable.

3. Repeat step 2 while the table Is updated.

4. (2):
(4.3,4.4)

AB|C|D|E|F|IGH

T | Mmoo o0 | >

ﬂ%i&&
if‘) n\‘) ‘}
a

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minif [A[B|C|D [E|F |G|H
4.4.1. Equivalence of two {A
Table-filling algorithm(B |-~
EX)
C
ol [~ @it L{EF}
ne «@u SEE .

4, (2):

(4.3,4.4)
4.4,
4.4.1.
(Table-filling algorithm)
2. D, q a r=90(p,a),

5= 5(q:a) {r,;s} {p.q}

25/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton

4.4.1. Equivalence of two states
Table-filling algorithm

1. For two states p, q and an input alphabet a, let r=o(p,a)
and s=A(q,a). Then, p and g are distinguishable if r and s
are distinguishable.

A marked pair of two states should be distinguishable. s

4.4,
4.4.1.

vV VYV

P, 4

(

(2):
4.3,4.4)

(Table-filling algorithm)

27/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton
4.4.1. Equivalence of two states
Correctness of the Table-filling algorithm stands for
» distinguishable pair will be surely determined, and
» equivalent pair will be never marked.

[Theorem] Two states p and g are equivalent if the entry {p,q}
IS not marked by the algorithm.

28/50

4, (2):
(4.3,4.4)

P.4

Wh.g
Wh.g P.g

g(p,Wp,q),g(q,Wp’q) 29/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton

[Theorem] Two states p and g are equivalent if the entry {p,q} is not marked by
the algorithm.
[Proof] To derive contradictions, suppose theorem is not true.
1. By the construction of the algorithm, {p, g} will be never marked if they are
equivalent.
2. So, theorem is not true only if the algorithm fails to distinguish a
distinguishable pair {p,q}.
We call the pair in condition 2 bad pair.
For each bad pair {p,q}, there is the shortest word w, , that distinguish p
and @.
We take a bad pair {p,q} such that w, , Is the shortest among such words.

exactly one of 3(p, w,,) and S(q,wp,q) IS accepting state 30/50

4. (2):

(4.3,4.4)
4.4,
[]
P, 4
[]
W, P.q
1. qu:g : P.9
2. Wp,FE&E s Wog=8y8,...8,

s:= S(p,a,) D) A @2
t:= &(g,a,)

31/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton

[Theorem] Two states p and g are equivalent if the entry {p,q}
IS not marked by the algorithm.

[Proof] To derive contradictions, suppose theorem Is not true.
We took the bad pair {p,q} that gives the shortest w, ,.

1. wy,=€&; the algorithm should distinguish p and g at step
1. Hence we have a contradiction.

2. W, ZE; we letw,=a,a,...a,, and let

s := S(p,a,) @i,@

t:= o(g,ay)

32/50

4, (2):
(4.3,4.4)

4.4,
[] P, g
[]
W P.Q
2. Wy FE ; Wpe=248y...3, , S = O(p,ay), t 1= O(q,a,)
s, t a,as...a,
W, s, t
s, t P, q
P, q
N ()

33/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton

[Theorem] Two states p and g are equivalent if the entry {p,q}
Is not marked by the algorithm.

[Proof] To derive contradictions, suppose theorem is not true.

We took the bad pair {p,q} that gives the shortest w, ..
2. W FEE; W,=a,3,...a,, 5 = Op,a;), and t := S(q,a,).
Then, s, t is distinguishable by the word a,a,...a,.

Since w,, Is the shortest word, s and t should be distinguished by the
algorithm.

Then, after s and t are distinguished, p and g should be distinguished.
This contradicts that {p,q} Is a bad pair.
Therefore, ‘the shortest bad pair’, or any bad pair, does not exist. 3450

B e

(4.3,4.4)
L, L,
DFA A, A,
DFA A, A,
A2

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton

4.4.2 Decision of the equivalence of two regular
languages

For any two regular languages L, and L, we can
determine If they are the same or not as follows;
Construct DFA Al and A2 with L(A1)=L,, L(A2)=L,
Regard that they are a DFA A without unigue initial state
Perform Table-filling algorithm for A

If the initial state of A, and the initial state of A, are
equivalent, we have L,=L,. Otherwise, L;==L,.

I

4. (2):
(4.3,4.4)

4.4,
4.4.3. DFA

37/50

4. Regular languages (2):
(Text 4.3,4.4)

4.4. Equivalence and Minimum of an automaton
4.4.3. Minimization of a DFA

Table-filling algorithm for a DFA A - Each pair of
states p,g iIs equivalent or distinguishable.

[Theorem] Suppose p and g are equivalent, and so are
and r. Then p and r are equivalent.

[Proof (Sketch)] Assume {p,q} and {q,r} are equivalent
and {p,r} is not. Then there is a word w that
distinguish p and r. But w also distinguish either p,g

or g,r. This Is a contradiction.
———

4.4,

4.4.3. DFA

[Ip ¢ q r p r

[]
{AE}{DF}.{BH}
{A I} {E,1}

{AE.I}{D.F}{B H}

4.4. Equivalence and Minimum of an automaton
4.4.3. Minimization of a DFA

[Theorem] {p,q} and {q,r} are equivalent — {p,r} is equivalent

[Corollary] Equivalent relation partitions states into
‘equivalent blocks.’

Equivalent pairs;
{AE}{D,F}{B,H},
{A 1} {E, 1}

Equivalent blocks;
{AE 1} {D,F}{B,H}

4.4,

4.4.3. DFA

[Ip ¢ q T p T

[]
{AE}{DF}{BH},
{A,I}{E I}

{AE.I}{D.F}{B H}

41/50

4.4. Equivalence and Minimum of an automaton
4.4.3. Minimization of a DFA

[Theorem] {p,q} and {q,r} are equivalent — {p,r} is equivalent

[Corollary] Equivalent relation partitions states into
‘equivalent blocks.’

Equivalent pairs;
{AE}{D,F}{B,H},
{A 1} {E, 1}

Equivalent blocks;
{AE 1} {D,F}{B,H}

42/50

4.4,
4.4.3. DFA

[]1DFAA=(Q,X,O4F)
N] DFA B=(Q,~,&,q",F)

1. q q
2.
3. O(pa)=p, P, P, P, P,
o’'(P,a)=P,
L(A)=L(B)
[]
2.
3. P, P, a

P,

43/50

4.4, Equivalence and Minimum of an automaton

4.4.3. Minimization of a DFA
[Theorem] For a DFA A=(Q,>,0,q,F), we construct a
DFA B=(Q,>’,®o’,q,F’) by regarding ‘equivalent
block’ as ‘a new state’. Precisely,
1. g isthe block containing g,
2. F’is the set of blocks containing a state in F,
3. O'(P,a)=P, if &(p,,a)=p,, p; isin block P,, and p, Is In
block P,
Then, L(A)=L(B).

[Proof (Outline)]

2. Any equivalent state of an accepting state is an accepting
Sstate.

3. Foranystate p,’in P, ©&(p;,@) Po..

44/50

4.4,
4.4.3. DFA
[] B DFA

DFA

45/50

4.4. Equivalence and Minimum of an automaton

4.4.3. Minimization of a DFA

[Theorem] The automaton B constructed from A has the
minimum number of states, and it is determined

uniquely.

» No automaton with less
states than B can accept the

same language.
» From any redundant DFA,

we have the same B If the
language Is the same.

B

46/50

4.4.

4.4.3. DFA
[] B DFA
[JLB)=L(C) C B
B C DFA
X

47/50

4.4, Equivalence and Minimum of an automaton
4.4.3. Minimization of a DFA

[Theorem] The automaton B constructed from A has the minimum
number of states, and it is determined uniquely.

[Proof (Sketch)] Let C be a DFA with states less than B
and L(B)=L(C). Consider a DFA X that contains B
and C, and simulates them simultaneously.

 Product construction

vq‘ .) /
>

O ©

L © ./ \X

48/50

[] B DFA

[TLB)=L(C) C
B C
X

B P, P, C
P

P11, Py
W

S(p,w) S(p,w)

L(B) = L(C)

[Theorem] The automaton B constructed from A has the minimum
number of states, and it is determined uniquely.

[Proof (Sketch)] Let C be a DFA with states less than B and
L(B)=L(C). Consider a DFA X that contains B and C, and
simulates them simultaneously.

Two distinct states p, and p, in B
corresponds to the same state p in C.
However, since p,, p, are distinguishable,

There Is a word w that brings
O (py,W) andé(pz,w) to 4 %W ©) N
the different states. B © ©

This contradicts that L(B) = L(C).

50/50

