4 =2TTAREMEESTERE

o [B]28 @EJTC_IFI |$
EREDOMENGH LT A DA E
. Fn'ﬂﬁd)%ébﬁxlzﬁﬁﬁ’é%é'l‘i
DIV FANTEHRLHE LW EZTRT AE

PDSAREIZELTWAEESD“#HLI" D ELER
AlXIEFHAOT= D BITIRIRI TRV EE,
BIFAKYE#LILVCE A 5.

Tl&, AEBAR([ZIGHBITHMESIZ?
< fRMBIERTEICKRDHEEER

AB &&
AZBNEITY S € ADERRERIREZBD RIS

SRz 5L
(AlXB~NI=ZJTHIEE)
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3.4. Reducibility and Completeness 1/13

 Reducibility of a problem

...Measure of relative hardness of the problem
e Completeness of a problem in a class

...Most difficult problem in the class

Comparison of sets in the class RE by their “hardness”
If A Is recursive but B Is not recursive, then we can say that
B is harder than A.
Then, what about if neither A nor B Is recursive?
< comparison based on reducibility

A, B :sets
Reduce A to B € Replace the recognition problem of A with
the recognition problem of B.
(A'is reducible to B)
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TE 3.4

A B FEDEE

(1) RDOEHZ®mT-9 BEE h ZANGLBADIFFHATIZITTELYD.
(@) h [ = HhoZ ~DEE#(£E /)
(b) VxeZ*[xe A<> h(x)e B]
(c) h [XETEmIgE

(2) ADNGBADIFINBNETTNFHET HEF,

AlEBANIRFABIIZETTRIREE LY.

B8, ADBANIRMAFIERITAIRE THAEZA S, BEREIRT 5.
(m [, recursive many-one reduction @ m)
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Definition 3.4:
A, B:arbitrary sets
(1) A function h is recursive reduction from A to B if
(a) h is a total function from X* to X*
(b) ¥x eX*[x e A & h(x) e B]
(c) h is computable.
(2) If there Is a recursive reduction from A to B,
we say that A is recursively reducible to B.

By A < B we express that A Is recursively reducible to B.
(the m in the suffix indicates recursive many-one reduction)



1513.10 313

EVEN={[n] :nl&{&%]), oODD={[n] :nl&F#]
n| [EInD2ERE (n: BAR)

In+1]  x=[n|&kEoTLVEEE

)= {x, ZOMOLE

COD h, TN DFTERTEE. FT=,
VxeX*[xe EVEN < h (x) € ODD]
&> T, h; [REVENADS0DDDIFHAHETT
~.EVEN < ODD
B h, HNODDMSEVENANDIRFBIZETTIZEE O TLNS.
Vx e X*[xe ODD — h,(x) e EVEN]
vx e =*[h,(x) e EVEN — 3n > 0[h, (x) =[n+1| e EVEN]]
— 3In21[h (x) =[n+1]e EVEN]]
— 3n>1[x =[n] e ODD]]— [x € ODD]
.ODD <, EVEN



Ex.3.10 313

EVEN={|n| :niseven}, ODD={|n] :nis odd}
'n] is binary representation of n (n:natural number)

1 (X) = {[n +1]  ifx= W
otherwise

This h, is obviously total and computable. Also,
VxeX*[xe EVEN < h (x) € ODD]

Therefore, h, is a recursive reduction from EVEN to ODD.
~.EVEN < ODD

The same h, is also a recursive reduction from ODD to EVEN.

Vx e X*[xe ODD — h,(x) e EVEN]
vx e *[h,(x) e EVEN — 3n > 0[h,(x) =[n+1| e EVEN]]
— 3In21[h (x) =[n+1]e EVEN]]
—»3n>1[x=n]eODD]] - [x € ODD]
- ODD <_ EVEN
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EVENMNSODDANY-EEHlATR T
1 XeEVENMDEE
hz (X) =

10 ZDnLE

BABDBFTNHIERIGEED T, h, [EEFHHEATHE
1 ODD, 10 ¢ ODD=h\
Xxe EVEN — h,(x)=10ODD
X¢ EVEN — h,(x) =10¢ ODD
-.Xe EVEN < h,(x) e ODD
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Simpler reduction from EVEN to ODD

1 xeEVEN
hz (X) = i
10 otherwise

Since odd-evenness of a natural number is computable, so is h,.
Since 1 ODD, 10 ¢ ODD
xe EVEN — h,(x) =1 ODD
X¢ EVEN — h,(x)=10¢ ODD
.. Xxe EVEN < h,(x) e ODD



EH3.12: A< BELWSERICHHIETDESABEEZZD.
CDEE, BAIRINEI>ADIRIARY.

RIERA :

ASpBD> ADSBADIFMMEETT h AEET .
£2T, xeAELVSHIERIE D h(x) e B?
DFRY, ROTATSLIFAZRHT 5.
prog A(input x);
begin

If h(x) € B then accept else reject end-if

end.

BOVEINENE S, BERRT 5700 S LDEFET 5.
>h(x) e B¥HIESTH70T 5L
NTLENDTOYS LANTER.
£oT, AIXIRHAEY. sE B #&
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Theorem 3.12: Consider any sets A and B such that A<, B.
Then, B Is recursive—>A Is also recursive.

Proof:

A <. B => there is a recursive reduction h from A to B.
So, the decision problemof xe A=» h(x)e B?
That is, the following program recognizes A.
prog A(input x);
begin

If h(x) € B then accept else reject end-if
end.

If B Is recursive, there iIs a program that recognizes B.
—>a program that determines h(x) B
Now, we have a complete program A.
Thus, A Is recursive. Q.E.D.



s

6/13

Bz oNT-EE5N“FIZAZGBWN I EFRTEODOEEEZRE

() A<,B A CDESEBAE
(i) ASIREBITL. T | 2 s B ey

{513.11:

ZERO ={a: IsProgram(a) A VX[f_a(x) =0]}
ZEROFT ={a: IsForTimes(a) A VX[f _a(x) =0]}
TOTAL ={a: IsProgram(a) A VX[f_a(x) =L ]}
FEHDE
El{% Lf=h>T,
HALT<_ZERO ZEROg¢REC (HALT ¢REC&KY)

HALT < ZEROFT ZEROFT ¢ REC (HALT ¢REC&KY)
ZERO<_ TOTAL TOTAL¢REC (ZEROg¢REC&KY)
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Il
It suggests a method to show that a given set is “intractable”
i) A<
() A=p B and If we can show such a set A, then

(i1) A Is not recursive. B is not recursive.

Ex.3.11:

ZERO ={a: IsProgram(a) A VX[f_a(x) =0]}
ZEROFT ={a: IsForTimes(a) A VX[f _a(x) =0]}
TOTAL ={a: IsProgram(a) A VX[f_a(x) =L |}
Summarizing,
relation what follows

HALT < ZERO  ZEROgREC (byHALT ¢REC)

HALT < ZEROFT ZEROFT ¢REC (by HALT ¢ REC)
ZERO< TOTAL TOTAL¢REC (byZERO ¢REC)
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EI3.13. A= BELVSERICHAEEDNDESA BZEZS.

CDES. ROIEMKYILD,

(1)BERE —>AERE (BAMERRE —> ALREFEATHE

(2)BEco-RE —AEco-RE

(##E) XHEEBEZDHE.
(1) A¢RE — B<¢RE
(2) A€ co-RE — B4 co-RE

513.11, FIE3.13 — ZERO. TOTALI[Z
RE[ZHco-REIZHESIZLY,

k=] I
ZERO ¢ RE HALT € RE, HALT= ZERO
ZERO ¢ co-RE HALT ¢ co-RE, HALT= ZERO
TOTAL € RE

ZERO ¢ RE, ZERO=_TOTAL

TOTAL ¢ co-RE ZERO ¢ co-RE. ZERO= TOTAL
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Theorem 3.13. Consider any sets A and B such that A = _B.

Then, we have:
(1) BE RE— A € RE (Bisenumerable — sois A)

(2)B € co-RE — A € co-RE

(Remark) Their contrapositions:

(1) ARE — B4RE
(2) A4 co-RE — B4 co-RE

Ex.3.11, Theorem 3.13 — Neither ZERO or TOTAL belongs to

RE or co-RE.
property reason
ZERO & RE HALTZ RE. HALT émZERO
ZERO & co-RE HALT & co-RE. HALT ém ZERO
TOTALZ RE ZERO & RE. ZERO ém TOTAL

TOTAL& co-RE ZERO &co-RE, ZERO =, TOTAL
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ZICH[EETE ¢ HMLIFHERTLHFER
A= B— ADRHFEEZBNDEFMBICEHTES,
J
ADEHLE = BOELS
(BZZRHBITH7O07 T LBHNIFADZEHIZFEZ S, )

TEIH3.14.
FEIC5EZ0NT-%£8 A, B, CIzxL. ROBEZEMRLYILD
1) AZ A
2) AS BMDOB= CHLIFAZ_C

A=,B &A= BM™MB=, A
=, [FRMER R (RIREEDHLS)
=, BDEEALEBIL =, -REELS,
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Reducibility : a means of comparing hardness
A =_ B — We can convert the recognition problem of A into that of B.
\
hardness of A < hardness of B
(A program recognizing B can be used to recognize A.)

Theorem 3.14. For any given sets A, B, C, we have
(1) AZ_A
(2) A=_BandB =_ CimpliesA=_C

def
A=_B < A= _BandB =_A

-+ Is an equivalence relation (equal hardness)
If A =_ B, we say that A and B are =_-equivalent.



1513.13.
ZERO € RE .. ZERO X _HALT
(*." ZERO < HALT,T HEHALT €E REZGDT
ZERO ERE&HYFE)
—7A.HALT < ZERO
. .ZEROITHALT XY EIZE#LLY,

1513.14.
TARTODIFMHES IETEVLIZIFMHAIZRE,
F-EZIEX.EVENUBHDES) EPRIME(RBDES) (X
RN Z [EME
EVEN = _PRIME
(MAELFMEVSEKRTRIEZEEDEHLSY)
N

ELLBETRETSHEND
ERTRZEICELL
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Ex. 3.13.

ZERO ¢RE ..ZERO X _HALT
(*.* ifZERO < HALT we have HALT €RE and
ZEROE RE, a contradiction)
On the other hand,HALT <.,ZERO
. .ZERO is strictly harder than HALT.

Ex. 3.14.
All the recursive sets are recursively equivalent to each other.
For example, EVEN (set of even numbers) and PRIME
(set of primes) are recursively equivalent
EVEN = _PRIME
(both of them are equally hard in the sense that they are
recursive.)
both computable
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(one of the most difficult sets in RE)

TE £ 3.5.
£EADNROEHEE=FEE. TNE(S, DHET)
RE-5T % (RE-complete) &LV,
(a) VLERE [L = A]
A KVEIZELWBLDIIREIZIZFELALY)
(b)A ERE

EE5ANLEEDOEH (a)zlIHZxmi=-9 &=,
RE-H %t (RE-Hard) &LV,
(TRTHOREESKVEHLWVESNDI L)
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Definition of “the hardest sets in the class RE”

Def. 3.5.
A set A is called RE-complete (under = ) if the following
conditions hold
(a) VL €RE [L = A]
(no element of RE is strictly harder than A).
(b)A ERE

If a set A satisfies only (a) above, it is called RE-hard.
(meaning sets harder than any RE set)

10/13
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FIE3.15 HALTIZRE-=4¢

(EEBA)
HALT € REXLZD T, &4 (b) [XOK,
L {EENDREEEF LT A,
—|LZFFEHETH5I095L LHITFEETS

TARTHOXeZ™* [TxL.,
xelL e Halt(TL7x) e»><lL) x> € HALT

£ T, h(x) &< x> & L MEHALTADIRFBSETT,
(REBA#R)
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Theorem 3.15 HALT is RE-complete.

(Proof)
Since HALT € RE, the condition (b) is satisfied.
L:any RE set.
— a program L that semi-recognizes L.

foranyxex*
Xel e Halt(|L], x)e=<[L], x> EHALT

Thus, h(x)eef< [L], x> is a recursive reduction from L to HALT.
Q.E.D.
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EIE3.16: A, BZEEDEESLET S,
(1)[AD'RE-EH&] mD [A =, B] 5L B (IRE-E
(2)A DRE-EZ © A Hico- RE-?I:;E

s

513.15. F¥E3.16 ZHVNT. LWAWALTESD

A

35
HALT
HALT

ZEROFT

ZEROFT
ZERO
TOTAL

B (EEH)ETRT.
LS FHEA
RE-E& EHE3. 15
co-RETE HALTH'RE-E . HALT €co-RE
co-RE5E2®  HALTHco-REE# . HALT < _ZEROFT
RESTE ZEROFTh'co-RER%# . ZEROFT € RE
RE-E &, co-REF HALT< ZERO.,

RE- %, co-RER % ZERO< ,TOTAL
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Theorem 3.16: Let A and B be arbitrary sets.
(1) [Ais RE-hard and A =, B] implies B is RE-hard.
(2)Ais RE-hard <> Ais co-RE-hard.

Ex.3.15 Using Theorem 3.16, we can show hardness of various sets.

Sets hardness reasons
HALT RE-complete Theorem3. 15
HALT co-REcomplete HALT is RE-hard, HALT € co-RE
ZEROFT co-REcomplete HALT is co-REhard ., HALT < _ZEROFT
ZEROFT REcomplete ZEROFT is co-REhard . ZEROFT € RE
ZERO RE-hard. co-REhard HALT Sm ZERO,

TOTAL RE-hard. co-REhard ZERO < TOTAL
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H.RE-EEZHREDEE =
=T = S
REnBC BT L R S,08ET
REC:REQDH TBHPELNES”

TEIH3.17.
(1)REC N H=¢
(2)RE—(REC U H) # @

(1)REC ¢ RE
RECIXREHEREZR =, DHLETHAL TS,
(2) DEEFAIEFEF T D THES,
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H:an RE-complete set

H:“hardest set” in RE gnder the reduction =
REC: “easiest set” In RE

Theorem 3.17.
(1)REC M H=¢
(2)RE—(REC UH)# @

(1)REC @RE
REC is closed under the equivalence relation
(2) The proof is complicated, and so omitted.

™m*
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