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3.4. Reducibility and Completeness s
« Reducibility of a problem

...Measure of relative hardness of the problem
« Completeness of a problem in a class

...Most difficult problem in the class

Comparison of sets in the class RE by their “hardness”
If Ais recursive but B is not recursive, then we can say that
B is harder than A.
Then, what about if neither A nor B is recursive?
& comparison based on reducibility

A, B :sets
Reduce A to B € Replace the recognition problem of A with
the recognition problem of B.
(Ais reducible to B)
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EF3.4:
A B EFEDES
(1) ROFHEmT-I EE h ZANSBADIFMEETELNS.
(@) h [& = HhSZ ~DOREH (£ iErY)
(b) VxeZ*[xe A<>h(x)eB]
(c) h [FETEATEE
(2) ADDBNDIRIHEIETAFET HEE,
AlEBA IR ITE T AT REE LS.

8, ADPBANIRMAETTAIRETHALFA S, BEERT 5.
(m [, recursive many-one reduction @) m)

1513.10 313
EVEN={[n] :ni&f8%]}, ODD={[n] :nl&#%]
[n] [EnD2EREE (n: BARKD
hl(x)={n+ﬂ x=[n]&HoTNBEE
X, ZOtDEE
ZO h, [FEASH 2GRN DEHE AT RE. Fiz,
VX eZ*[x e EVEN « h(x) e ODD]
&£oT, hy [FEVENAS0DDA DI HHIE T
-~.EVEN <, ODD
L h, HAODDMSEVENANDIRMAETTIZHAE>TLNS.
VX € Z*[x € ODD —> h,(x) € EVEN]
vx e Z*[h(x) e EVEN — 3n > 0[h, (x) =[n+1] e EVEN]]
—3nz1h(x) =[n+1]e EVEN]]
—3n21x=[n]eODD]] - [xe0DD]

..0ODD < EVEN
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Definition 3.4:
A, B:arbitrary sets
(1) A function h is recursive reduction from A to B if
(a) h is a total function from X* to £*
(b) ¥xeZ*[xeA <>h(x)eB]
(c) his computable.
(2) If there is a recursive reduction from A to B,
we say that A is recursively reducible to B.

By A < B we express that A is recursively reducible to B.
(the m in the suffix indicates recursive many-one reduction)

Ex3.10 313
EVEN={[n] :niseven}, ODD={[n] :nisodd}
[n] is binary representation of n (n:natural number)

h(x) = {[n +I]  ifx= [n]
X, otherwise
This h, is obviously total and computable. Also,
VX e X*[xe EVEN < h,(x) e ODD]
Therefore, h, is a recursive reduction from EVEN to ODD.
-.EVEN <, ODD
The same h, is also a recursive reduction from ODD to EVEN.
Vx € Z*[x € ODD — h(x) e EVEN]
vx e Z*[h(X) e EVEN — 3n > 0[h,(x) = [n+1] e EVEN]]
—3n21[h (x) =[n+1]e EVEN]]
—3n21x=[n|eODD]] > [x e ODD]
-.ODD £, EVEN




4113
EVENM50DDADH > E B fliAE T
h(x) = 1 xeEVENDEE
210 zotoeE

BRBOBINHETRELZDT, h, (EFHETHE
1€ ODD, 10 ¢ ODD2HM5
xe EVEN — h,(x) =1e ODD
x¢ EVEN — h,(x) =10 ¢ ODD
. xeEVEN © h,(x) e ODD
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EH3.12: A< BELWSERICHHEEDESABEEZD.
CDEE, BHIRHEI D ADIRHNEY.

FIERA
A< B> ADDSBADIRMEIETT h NEFEET 5.
&oT, xeAEWSHIERHIE D h(x) e B?
2FY, ROTOTSLIFAZRHT .
prog A(input X);
begin

if h(x) € B then accept else reject end-if
end.

BONIRINAIALEDS, BERE T ATV SLNEETS.
>h(x) e BEHIETST05 5L

ZNTLEREOTOTSLANTERK.

FoT, AILIRHHRE. REBA#R
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EDS
5RO EAAFIBABNCEERT OO S AL RS
M A<, B 2 COESBEBAE
() ARIITEL. = 2 e e

153.11:

ZERO ={a: IsProgram(a) A Vx[f_a(x) = 0]}
ZEROFT ={a: IsForTimes(a) A VX[f_a(x) = 0]}
TOTAL ={a: IsProgram(a) A VX[f_a(x) =L 1}
FEDHDE
BifR Ltz=htoT,

HALT<,ZERO  ZERO#REC (HALT #REC&Y)

HALT < ZEROFT ZEROFT ¢REC (HALT ¢REC&KY)
ZERO<, TOTAL TOTAL¢REC (ZEROgREC&KY)
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Simpler reduction from EVEN to ODD

1 xeEVEN
hz (x)= .
10 otherwise

Since odd-evenness of a natural number is computable, so is h,.
Since 1 ODD, 10 £ ODD
xe EVEN — h,(x)=1e ODD
xg EVEN — h,(x) =10 ¢ ODD
. x€EVEN « h,(x) e ODD
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Theorem 3.12: Consider any sets A and B such that A<, B.
Then, B is recursive=>A is also recursive.

Proof:

A <., B = there is a recursive reduction h from A to B.
So, the decision problem of xe A =» h(x)€ B?
That is, the following program recognizes A.
prog A(input x);
begin

if h(x) € B then accept else reject end-if
end.

If B is recursive, there is a program that recognizes B.
—->a program that determines h(x) B
Now, we have a complete program A.

Thus, A is recursive. Q.E.D.

6/13
RS

It suggests a method to show that a given set is “intractable”
i) A<
(!? //i_—m E: and . = If we can show such a set A, then
(ii) A'is not recursive. B is not recursive.

Ex.3.11:

ZERO ={a: IsProgram(a) A Vx[f_a(x) = 0]}

ZEROFT ={a: IsForTimes(a) A Vx[f_a(x) = 0]}

TOTAL ={a: IsProgram(a) A Vx[f_a(x) =L ]}

Summarizing,
relation what follows

HALT <, ZERO  ZEROgREC (by HALT ¢REC)
HALT <, ZEROFT ZEROFT ¢REC (by HALT ¢ REC)
ZERO< TOTAL TOTAL¢REC (byZERO¢#REC)
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FEH313. AS BELWSERICHIERDESA BEEZD,
ZDEE.RDTEMNRYIID,
(1)BERE —>AERE (BAREAEE —> ALREATHE)
(2)BEco-RE —>AEco-RE

(#:E) sHBEEER DL,
(1) Aéd RE — B4¢RE
(2) A¢ co-RE — B¢ co-RE

513.11, E#3.13 — ZERO, TOTALIZ
RE[ZHco-REIZHE IR,

{31 pl=:]
ZERO ¢ RE HALT ¢ RE, HALT=_,ZERO
ZERO € co-RE HALT € co-RE. HALT=< ZERO
TOTAL € RE ZERO ¢ RE, ZERO= TOTAL
TOTAL € co-RE ZERO € co-RE. ZERO=, TOTAL

7113
Theorem 3.13. Consider any sets A and B such that A = B.

Then, we have:
(1)B € RE— A € RE (B isenumerable — so is A)
(2)B € co-RE — A € co-RE

(Remark) Their contrapositions:
(1) AéRE — B¢RE
(2) A¢ co-RE — B¢ co-RE

Ex.3.11, Theorem 3.13 — Neither ZERO or TOTAL belongs to

RE or co-RE.
property reason
ZERO & RE HALT¢ RE, HALT =, ZERO
ZERO ¢ co-RE HALT & co-RE. HALT = ZERO
TOTAL¢Z RE ZERO ¢ RE, ZERO = TOTAL

TOTALE co-RE ZERO &€co-RE, ZERO =< TOTAL
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ErARetE  BLSELEK T HFR
A=, B ADRHMEEBOREMBEIZERTES,

{
ADHLE = BOBLE
(BERHT 70T LD BNIFADRHIEZ S, )

TEH3.14.
EEICEZONTI=ES A B, CIZxL. ROBEFZEMNRYILD
LA, A
(@ A=,BMOB=,CHLIEA=S, C

AS,B A<, BADBS,A
=, FRIERE(RAREOHLY)

A=, BODELEALBIE = -FiEENS,
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Reducibility : a means of comparing hardness
A =, B — We can convert the recognition problem of A into that of B.

)
hardness of A < hardness of B
(A program recognizing B can be used to recognize A.)

Theorem 3.14. For any given sets A, B, C, we have
(1) A=A
(2) A= BandB =, CimpliesA =, C

9/13
513.13.
ZERO ¢ RE  .’. ZERO X HALT
(" ZERO < HALTES %, HALT € REZDT
ZERO €RELLYFE)
—%.HALT <,ZERO
. .ZEROIFHALTXYEIZELLY,

513.14.
TRTORAIES (TEVIIRNEIZRIE,
f-&Z L EVEN(BHIDEE) LPRIME (REDES) I
IR INRICRE
EVEN = PRIME
(MALLBMUEVSERTREEEDH#HLS)

ELLHEFETEDLS
BN TREECHLL

def
A=,B © A=S BandB= A
=, is an equivalence relation (equal hardness)
If A =, B, we say that A and B are = -equivalent.
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Ex. 3.13.

ZERO ¢RE .'. ZERO £, HALT
(*° ifZERO < HALT we have HALT € RE and
ZEROE RE, a contradiction)
On the other hand, HALT <, ZERO
.".ZERO is strictly harder than HALT.

Ex. 3.14.
All the recursive sets are recursively equivalent to each other.
For example, EVEN (set of even numbers) and PRIME
(set of primes) are recursively equivalent
EVEN = PRIME
(both of them are equally hard in the sense that they are
recursive.)
both computable
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“OSAREDFTHRLHELVEE " DER

(one of the most difficult sets in RE)

T £3.5.
EEADRDEHEH-TEE. TNE (S, DBHET)
RE-5££ (RE-complete) &LMVS,
(a)VL €RE [L =, A]
(A KFYEICHLVWEDIFREICIFFELELY)
(b)A ERE

SEANLRDOEY ) EHEmzTLE,
RE-E & (RE-Hard) &LV,
(TRTHOREEESVHLLVEEDIL)
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EHE3.15: HALTIZFRE-5E&

(FIEBR)
HALT € REZZDT. &4 (b) [FOK,
L:EFEMREEE LT S,
SLERBEHTEIOTSLLIEETS

FTRTOXeX* [TXFL.
xelL e Halt(TL1x) &= <TL, x> € HALT

&2 T, h(x) &'<Y x> & L hoHALTADIRREETT,
(FEBAH)
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Definition of “the hardest sets in the class RE”

Def. 3.5.
Aset Ais called RE-complete (under =) if the following
conditions hold
(a) VL €RE [L = Al
(no element of RE is strictly harder than A).
(b)A ERE

If a set A satisfies only (a) above, it is called RE-hard.
(meaning sets harder than any RE set)
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Theorem 3.15 HALT is RE-complete. ‘

(Proof)
Since HALT € RE, the condition (b) is satisfied.
L:any RE set.
— aprogram L that semi-recognizes L.

foranyxex*
XeL e Halt( [L], X)e=< [L], x> EHALT

Thus, h(x)eef< [L1, x> is a recursive reduction from L to HALT.
Q.E.D.
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EIH3.16: A BEEENEESLT D,
(1) [ADRE-HZ] ™D [A =, B] &5 B (ERE-RE
(2)A HRE-HE © A Hico-RE-FHE

f53.15. F¥E3.16 ZAWLT. LWALALEEED
g (2 ERY,

) LS FHEH
HALT RE-5&2 EHEB. 15
HALT co-RE5EE  HALTARE-EE, HALT Eco-RE
ZEROFT  co-RE5E2®  HALT#A'co-RERE . HALT < ZEROFT
ZEROFT REX#% ZEROFThHico-REEE . ZEROFT €RE
ZERO RE-H#. co-REE HALTS ZERO.
TOTAL RE-FR#. co-REME ZEROL ,,TOTAL
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Theorem 3.16: Let A and B be arbitrary sets.
(1)[Ais RE-hard and A =, B] implies B is RE-hard.
(2)Ais RE-hard € Ais co-RE-hard.

Ex.3.15 Using Theorem 3.16, we can show hardness of various sets.

Sets hardness reasons
HALT RE-complete Theorem3. 15
HALT co-REcomplete HALT is RE-hard, HALT € co-RE

ZEROFT co-REcomplete HALT is co-REhard . HALT < WZEROFT
ZEROFT REcomplete ZEROFT is co-REhard . ZEROFT € RE
ZERO RE-hard. co-REhard HALT Sm ZERO,

TOTAL RE-hard, co-REhard ZERO <, TOTAL




H:RE-E2EEDEE
H-REQH T RLHELLES"
REC:REQHF T HREPSLIVES”

TEIE3.17.
(1)REC N H=¢
(2)RE—(REC U H) # ¢

(1)REC S RE
RECIERER &R =, DELLETEHALTLS,
(2) DB FHEMEDOTHE,

H:an RE-complete set
H:“hardest set” in RE
REC: “easiest set” in RE

Theorem 3.17.
(1)REC " H=¢
(2)RE—(REC U H) # ¢

(1)REC $RE
REC is closed under the equivalence relation
(2) The proof is complicated, and so omitted.
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Under the reduction =

s

Information

@ 10A27H (£#R) IEHhMETAK
> BERE11:00~12:30 (309 LA EBZILIz5 AZZ L)
> @FEIFI0A 258 DBENFET(TFRARIEET)
> TERM BRITHLAHZILE

©® Mid-term exam will be on October 27th, Fri.
» Time: 11:00-12:30 (You cannot take it after 11:30)
» About: up to Today (Chapter 3)
» Texts and other materials are not allowed to bring

Memo:
Report (3); Today
Ans. for Report (2); Today’s Office Hour




