I222 計算の理論 "Theory of Computation" Report (3)

Teacher: Ryuhei UEHARA TA: Sachio TERAMOTO

Japan Advanced Institute of Science and Technology

November 1st, 2006 Office Hour

1222 計算の理論 "Theory of Computation"

Report (3)

問題 1

問題 1 の解答例

DIES I VANIE

問題 2

同超 2 の附合例

_ .

Solution

simpler)

rroblem 2

正整数上の関数 c を次のように定義する:

$$c(n) = \left\{ egin{array}{ll} rac{n}{2} & n \ ext{が偶数のとき} \ 3n+1 & n \ ext{が奇数のとき} \end{array}
ight.$$

また整数 k に対し、正整数上の関数 c^k を次のように定義する:

$$c^k(n) = \left\{ egin{array}{ll} c(n) & k=1 \; \mathfrak{O}$$
උප් $c(c^{k-1}(n)) & k>1 \; \mathfrak{O}$ උප්

ここで集合 C を以下のように定義する.

$$\mathcal{C} = \{n \mid \mathsf{bac}$$
正整数 k に対して $c^k(n) = 1$ が成立する $\}$

なお、コラッツの予想とは $\mathcal{C}=\mathbb{N}$ であり、この予想は $n<3\times2^{53}$ までは成 立することが確かめられている。コラッツの予想が成立するかどうかはわか らないが、集合 C は枚挙可能である、 C を枚挙するプログラムを示せ、

解答例

まず、次のプログラム A_C を考える:

```
prog A_C (input x);
begin
   if x is not \langle n, k \rangle for some n, k then
       halt(1);
   else if c^k(n) = 1 then
      halt(n);
   halt(1):
end.
```

このとき、明らかに

- $ightharpoonup A_C$ は C に属する要素以外は出力しない
- ▶ 任意の $n \in C$ に対して, ある k が存在して, $c^k(n) = 1$ となるので, これらを $\langle n, k \rangle$ の形で A_C に与えると, n が出力される.

したがって, $RANGE(A_C) = C$ となる.

問題1の解答例(つづき)

ここで $\langle k,n \rangle$ 上の順序 \mathcal{O} を以下のように定義する.

```
\begin{array}{c|cccc} \langle 1,1 \rangle & & & \\ \langle 1,2 \rangle & & \langle 2,1 \rangle & & \\ \langle 1,3 \rangle & & \langle 2,2 \rangle & & \langle 3,1 \rangle & \\ \langle 1,4 \rangle & & \langle 2,3 \rangle & & \langle 3,2 \rangle & & \langle 4,1 \rangle \\ & & \vdots & & & \vdots & & \end{array}
```

```
この順序 \mathcal O 上での、i 番目の要素は計算可能である。 (プログラムの概略) i'=1 \\ \text{for } (t=2 \text{ to } \infty) \{ \\ \text{for } (s=1 \text{ to } t) \ \{ \\ i'=i'+1 \\ \text{if } i'=i \text{ then output } \langle s,t-s \rangle \text{ if } i' \text{ 番目の要素 } \}
```

一方, 任意の Σ 上の文字列 x に対して, x の長さ優先辞書式順序での順番 (index(x)) は, 一意的に決まっていて, これも計算可能である.

I222 計算の理論 "Theory of Computation"

Report (3)

問題 1

問題 1 の解答例

問題 1 0

問題 2 の解答例

Problem 1

Solution 1

Problem 2

Salution 2

old tion 2

問題1の解答例(つづき)

以上を踏まえて、Cの要素を一つずつ枚挙するプログラムの概略を以下に示す.

- $\mathbf{0}$ $\mathcal{S} = \emptyset$;
- 2 for $(i = 1 \text{ to } \infty)$
- ③ 順序 \mathcal{O} 上での i 番目の要素 $\langle k,n \rangle$ を計算する;
- 4 if $A_C(\langle k, n \rangle) = n$ かつ $n \notin S$ then
- n を出力して、集合 S に n を追加する;

コメント

上記のプログラムは.

- ▶ 任意の $n \in \mathcal{C}$ に対して, $A_C(\langle k, n \rangle) = n$ となる k が存在する. ∴ i' 番目の $\langle k, n \rangle$ が \mathcal{O} 上で計算されたときに n は出力される.
- ▶ C の要素以外は出力しない.
- ▶ \mathcal{C} のある特定の要素が 2 回出力されることはないので, \mathcal{C} の要素を枚挙するプログラムである.

1222 計算の理論 "Theory of Computation"

Report (3)

問題 1

問題 1 の解答例

問題 2 の解答例

Solution 1

(Simpler)

Problem 2

次の関数を考える.

$$\chi^i(n) = \left\{ \begin{array}{ll} 0 & \text{if } n=1 \\ \frac{n}{2} & \text{if } i=1 \text{ and } n \text{ is even} \\ 3n+1 & \text{if } i=1 \text{ and } n(\neq 1) \text{ is odd} \\ \chi(\chi^{i-1}(n)) & \text{if } i>1. \end{array} \right.$$

このとき.

$$n \in \mathcal{C} \iff [n=1] \vee \exists k \ [\chi^k(n) = 1].$$

さらに, $n \in \mathcal{C}$ のとき, n > 1 であれば $[\chi^k(n) = 1]$ を満たす k は一意に定まる.

Solution

Solution

Problem 2

olution 2

```
したがって、次のプログラム Collatz は、C を枚挙する.
```

```
\operatorname{prog} Collatz(input x); \operatorname{begin} report(1); \operatorname{x}:=\varepsilon; while true do if (x is \langle n,k\rangle for some n, k) \wedge (\chi^k(n)=1) then report(n); \operatorname{x}:= 長さ優先辞書式順序で x の次の文字列 end-while
```

8,8

HALT \leq_m EVEN を仮定すると, $\mathcal{RE} \subseteq \mathcal{REC}$ となることを示せ.

戸田 誠之助 先生

渡辺 治 先生

上原 隆平 先生

問題2の解答例

解答例

① HALT は \mathcal{RE} 完全集合である. したがって, 任意の \mathcal{RE} 集合 A に対して, 帰納 的還元 h_A が存在し,

 $x \in A \iff h_A(x) \in \mathsf{HALT}.$

② HALT \leq_m EVEN を仮定すると, HALT から EVEN への帰納的還元 h が存在し,

 $y \in \mathsf{HALT} \iff h(y) \in \mathsf{EVEN}.$

③ EVEN $\in \mathcal{REC}$ であるので、任意の文字列 x に対して、 $h(x) \in \text{EVEN}$ かどうか は認識可能である.

I222 計算の理論 "Theory of Computation"

Report (3)

問題 1

問題 1 の解答例

問題 2

問題 2 の解答例

Problem 1

Solution 1

Problem 2

Solution

問題2の解答例

解答例

① HALT は \mathcal{RE} 完全集合である. したがって. 任意の \mathcal{RE} 集合 A に対して. 帰納 的還元 h A が存在し、

$$x \in A \iff h_A(x) \in \mathsf{HALT}.$$

② HALT $<_m$ EVEN を仮定すると, HALT から EVEN への帰納的還元 h が存 在し.

$$y \in \mathsf{HALT} \iff h(y) \in \mathsf{EVEN}.$$

③ EVEN $\in \mathcal{REC}$ であるので、任意の文字列 x に対して、 $h(x) \in \text{EVEN}$ かどうか は認識可能である.

以上から,

$$x \in A \iff h_A(x) \in \mathsf{HALT}$$

 $\iff h(h_A(x)) \in \mathsf{EVEN}$

となり、しかも $h(h_A(x)) \in \mathsf{EVEN}$ は認識可能である. よって $x \in A$ も認識可能で あり、これは $A \in \mathcal{REC}$ を意味する.

任意の \mathcal{RE} 集合 A に対して $A \in \mathcal{REC}$ が示されたので, $\mathcal{RE} \subset \mathcal{REC}$ を得る.

"Theory of Computation"

Report (3)

問題 2 の解答例

Let c be a function of a positive integer defined as follows:

$$c(n) = \begin{cases} \frac{n}{2} & n \text{ is even} \\ 3n+1 & n \text{ is odd} \end{cases}$$

The function c^k of a positive integer n for a positive integer k is defined as follows:

$$c^{k}(n) = \begin{cases} c(n) & \text{if } k = 1\\ c(c^{k-1}(n)) & \text{if } k > 1 \end{cases}$$

Now we define a set C as follows:

$$C = \{n \mid c^k(n) = 1 \text{ for some positive integer } k\}$$

Besides, Collatz conjectured that $\mathcal{C}=\mathbb{N}$, and it has been checked for all $n<3\times 2^{53}$ by brute force. We do not know whether the Collatz conjecture is true or not. However, the set \mathcal{C} is enumerable. Show a program that enumerates the set \mathcal{C} .

Solution

First, let's consider the following program A_C :

```
prog A_C (input x);
begin
   if x is not \langle n, k \rangle for some n, k then
      halt(1);
   else if c^k(n) = 1 then
      halt(n);
   halt(1):
end.
```

Then, obviously,

- $ightharpoonup A_C$ never reports any element not belonging in C.
- For any $n \in \mathcal{C}$, there exists a k such that $c^k(n) = 1$. Hence, given an input as $\langle n, k \rangle$, the program A_C report n.

Therefore, we have $RANGE(A_C) = C$.

Colution 2

We define our transiting order $\mathcal O$ on the tuple $\langle k,n\rangle$ as follows:

```
 \begin{array}{c|cccc} \langle 1,1\rangle & & & & \\ \langle 1,2\rangle & \langle 2,1\rangle & & & \\ \langle 1,3\rangle & \langle 2,2\rangle & \langle 3,1\rangle & & \\ \langle 1,4\rangle & \langle 2,3\rangle & \langle 3,2\rangle & \langle 4,1\rangle \\ & \vdots & & \vdots & & \end{array}
```

The ith tuple on ${\mathcal O}$ is computable with the following program. (Overview of Program) i'=1

```
for (t=2 to \infty)\{ for (s=1 to t) \{ i'=i'+1 //\langle s,t-s\rangle is the i'th element if i'=i then output \langle s,t-s\rangle \}
```

On the other hand, for any string x on Σ , the lexicographic order with length prefered of x is also computable, since it is identified uniquely.

 $\mathbf{0} \ \mathcal{S} = \emptyset$;

by one.

- 2 for $(i = 1 \text{ to } \infty)$
- Compute the *i*th tuple $\langle k, n \rangle$ on our transiting order \mathcal{O} ; ß
- if $A_C(\langle k, n \rangle) = n$ and $n \notin \mathcal{S}$ then 4
- Report n; $\mathcal{S} \leftarrow \mathcal{S} \cup \{n\}$; 6

Comment

The above program satisfies

- For an $n \in \mathcal{C}$, there exist k such that $A_{\mathcal{C}}(\langle k, n \rangle) = n$ \therefore Hence, n is reported, once the i'th tuple $\langle k, n \rangle$ is computed on \mathcal{O} .
- never reports any element except for in C.
- \triangleright never duplicate to report a same element in \mathcal{C} .

Therefore, the program is for enumerating each element in C.

Let's consider the following characteristic function instead of c^k :

$$\chi^{i}(n) = \begin{cases} 0 & \text{if } n = 1\\ \frac{n}{2} & \text{if } i = 1 \text{ and } n \text{ is even} \\ 3n + 1 & \text{if } i = 1 \text{ and } n(\neq 1) \text{ is odd} \\ \chi(\chi^{i-1}(n)) & \text{if } i > 1. \end{cases}$$

Now we can redefine C by χ as follows:

$$n \in \mathcal{C} \iff [n=1] \vee \exists k \ [\chi^k(n)=1].$$

Moreover, if $n \in \mathcal{C}$ and n > 1, then we can uniquely identify a constant k such that $[\chi^k(n) = 1]$.

Problem 1

Solution 1
Solution 1

(simpler)
Problem 2

olution 2

) |

```
Therefore, the following program Collatz enumerates \mathcal{C}.
```

```
prog Collatz(input x); 

begin 

report(1); 

x := \varepsilon; 

while true do 

if (x is \langle n, k \rangle for some n, k) \wedge (\chi^k(n) = 1) then 

report(n); 

x := the next word of x in the length prefered 

lexicographical order. 

end-while
```


Problem 2

Suppose that HALT \leq_m EVEN. Then show that we can obtain $\mathcal{RE} \subseteq \mathcal{REC}$.

Kurt Gödel

Alonzo Church

Alan Turing

Solution for problem 2

Solution

1 HALT is in \mathcal{RE} -complete. Hence, for any $A \in \mathcal{RE}$, there exists a reduction h_A such that

$$x \in A \iff h_A(x) \in \mathsf{HALT}.$$

2 Supporting HALT \leq_m EVEN, there also exists a reduction h from HALT to EVEN such that

 $y \in \mathsf{HALT} \iff h(y) \in \mathsf{EVEN}.$

3 By EVEN $\in \mathcal{REC}$, for any $x \in \Sigma^*$, $[h(x) \in \text{EVEN}]$ is recognizable.

I222 計算の埋誦 "Theory of Computation"

Report (3)

問題 1

問題 1 の解答例

明語っ

問題 2 の解答例

Solution 1

(simpler)

Problem 2

Solution for problem 2

Solution

① HALT is in \mathcal{RE} -complete. Hence, for any $A \in \mathcal{RE}$, there exists a reduction h_A such that

$$x \in A \iff h_A(x) \in \mathsf{HALT}.$$

2 Supporting HALT \leq_m EVEN, there also exists a reduction h from HALT to EVEN such that

$$y \in \mathsf{HALT} \iff h(y) \in \mathsf{EVEN}.$$

- 3 By EVEN $\in \mathcal{REC}$, for any $x \in \Sigma^*$, $[h(x) \in \text{EVEN}]$ is recognizable.
- Finally,

$$x \in A \iff h_A(x) \in \mathsf{HALT}$$

 $\iff h(h_A(x)) \in \mathsf{EVEN},$

and $[h(h_A(x)) \in EVEN]$ is recognizable.

- ▶ Hence $[x \in A]$ is also recognizable, and this implies $A \in \mathcal{REC}$.
- ▶ For any $A \in \mathcal{RE}$, we have $A \in \mathcal{REC}$. ∴ we can obtain $\mathcal{RE} \subseteq \mathcal{REC}$.

I222 計算の理論 "Theory of Computation"

Report (3)

問題 1

問題 1 の解答例

167 7 027310

DEE 2

140 E Z V26+ E 1/3

Solution 1

(simpler)

Problem 2