I222 計算の理論 "Theory of Computation" Report (4)

Teacher: Ryuhei UEHARA TA: Sachio TERAMOTO

Japan Advanced Institute of Science and Technology

November 15th, 2006 Office Hour

1222 計算の理論 "Theory of Computation"

Report (4)

問題 1

問題 1.1-3 の解 答例

問題 1.4 の解答例

Problem .

Solutions 1. 1-3

Solution 1.4

以下の命題は正しいか?正しいなら正しいことを証明し、正しくないなら反 証せよ.

- 1 $n^2 = \mathcal{O}(n^3)$
- $2 n \log n = \mathcal{O}(n^2)$
- 3 $\sqrt{n} = \mathcal{O}(\log n)$
- ④ スターリングの公式によると, $n! \sim \sqrt{2\pi n} \left(\frac{n}{\epsilon}\right)^n$ である. 関数 $f(n) = \sqrt{2\pi n} \left(\frac{n}{a}\right)^n$ とする. このとき $f(n) = \mathcal{O}(n^n)$ である.

以下の命題は正しいか?正しいなら正しいことを証明し,正しくないなら反 証せよ.

- $n^2 = \mathcal{O}(n^3)$
- $\bigcirc n \log n = \mathcal{O}(n^2)$
- $3 \times \sqrt{n} = \mathcal{O}(\log n)$
- **4** スターリングの公式によると, $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ である. 関数 $f(n) = \sqrt{2\pi n} \left(\frac{n}{a}\right)^n$ とする. このとき $f(n) = \mathcal{O}(n^n)$ である.

Definition

 $f(n) = \mathcal{O}(g(n))$ である必要十分条件は、ある正定数 c, d が存在し て、すべての(正の) n に対して

$$f(n) \le cg(n) + d$$

が成立することである。

従って、逆に $f(n) \neq \mathcal{O}(g(n))$ を示すためには、どんな正定数 c, d に対し ても, ある (十分大きな) n_0 が存在して,

$$f(n_0) > cg(n_0) + d$$

が成立することを示せれば良い.

Lemma

任意の正の定数 $\varepsilon > 0$ に対して, $\log n = \mathcal{O}(n^{\varepsilon})$ である.

Proof.

- ① 任意の正定数 $c,\ d$ に対して、 $\lim_{n \to \infty} \frac{\log n}{cn^{arepsilon} + d} = 0$ を示せばよい.

② ロピタルの定理
$$\left|\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)} \right|$$
 より、

$$\lim_{n \to \infty} \frac{\log n}{cn^{\varepsilon} + d} = \lim_{n \to \infty} \frac{\ln^{-1} 2 \ln n}{cn^{\varepsilon} + d}$$

$$= \frac{1}{\ln 2} \lim_{n \to \infty} \frac{n^{-1}}{c\varepsilon n^{\varepsilon - 1}}$$

$$= \frac{1}{c\varepsilon \ln 2} \lim_{n \to \infty} \frac{1}{n^{\varepsilon}} = 0$$

問題 1.1-3の解答例

解答例

① $n^2 = \mathcal{O}(n^3)$ は正しい.

c=1, d=0 とすれば、任意の n に対して $n^2 \leq n^3$ が成立する.

② $n \log n = \mathcal{O}(n^2)$ は正しい.

 \mathcal{O} -記法の定義より、 $\log n = \mathcal{O}(n)$ を示せばよい. また、上記の補題において $\varepsilon = 1$ とおけば、この主張は成り立つ.

- ③ $\sqrt{n} = \mathcal{O}(\log n)$ は正しくない.
 - ト どんな正定数 $c,\ d$ に対しても十分大きな n をとれば、 $\sqrt{n}>c\log n+d$ が成立することを示せば良い.
 - ▶ 上記の補題より、十分大きな n については $n^{1/4} > \log n$ がいえる.
 - ▶ 一方, 十分大きな n について, $\frac{n^{1/4}}{2} > c$ かつ $\frac{n^{1/2}}{2} > d$ である.
 - ▶ 従って、十分大きな n については $\sqrt{n} = \frac{n^{1/4}}{2} \times n^{1/4} + \frac{n^{1/2}}{2} > c \log n + d$ となる.

1222 計算の理論 "Theory of Computation"

Report (4)

問題 1

П

問題 1.1-3 の解 答例

100 EZ 1.7 07 M+ E

r robiem 1

iolution 1.4

 $\sqrt{2\pi n} \left(\frac{n}{a}\right)^n = \mathcal{O}(n^n)$ であることを示せ.

解答例

- ▶ ある正定数 c について $\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \leq c n^n$ を示す.
- ▶ 上式の両辺に In をとり整理すると、

$$\frac{\ln 2\pi n}{2} + n \ln n - n \ln e \quad \leq \quad n \ln n + \ln c$$

$$\ln n \quad \leq \quad 2n + 2 \ln c - \ln 2\pi.$$

 $lackbox{c} = \sqrt{2\pi}$ ととれば, すべての $n \geq 1$ について $\ln n \leq 2n$ が成り立つ.

Problem 1

Are the following claims correct? If it is correct, prove them. Otherwise, disprove them.

- $n^2 = \mathcal{O}(n^3)$
- $2 n \log n = \mathcal{O}(n^2)$
- 3 $\sqrt{n} = \mathcal{O}(\log n)$
- 4 According to the Stirling's Formula, we know $n! \sim \sqrt{2\pi n} \left(\frac{n}{a}\right)^n$. Let f be a function defined by $f(n) = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. Then, $f(n) = \mathcal{O}(n^n)$.

Problem 1 (Summary)

Are the following claims correct? If it is correct, prove them. Otherwise, disprove them.

- $3 \times \sqrt{n} = \mathcal{O}(\log n)$
- **4** O According toe the Stirling's Formula, we know $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. Let f be a function defined by $f(n) = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. Then, $f(n) = \mathcal{O}(n^n)$.

Definition

 $f(n) = \mathcal{O}(g(n))$ if and only if there exist constants c and d such that

$$f(n) \le cg(n) + d,$$

for any (positive) n.

Hence, to show $f(n) \neq \mathcal{O}(g(n))$, we just prove that for all positive constants c and d, there exists (a sufficient large) n_0 such that

$$f(n_0) > cg(n_0) + d.$$

Lemma

For any positive constant $\varepsilon > 0$, we have $\log n = \mathcal{O}(n^{\varepsilon})$.

Proof.

- 1 We show $\lim_{n\to\infty}\frac{\log n}{cn^{\varepsilon}+d}=0,$ for any constants c,d>0,
- **2** From L'Hospital's rule $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'}{g'}$

$$\lim_{n \to \infty} \frac{\log n}{cn^{\varepsilon} + d} = \lim_{n \to \infty} \frac{\ln^{-1} 2 \ln n}{cn^{\varepsilon} + d}$$

$$= \lim_{n \to \infty} \frac{n^{-1}}{c\varepsilon \ln 2 n^{\varepsilon - 1}}$$

$$= \lim_{n \to \infty} \frac{1}{c\varepsilon \ln 2 n^{\varepsilon}} = 0.$$

п

Solution

- - : If we take c=1 and d=1, then we have $n^2 \leq n^3,$ for any n.
- 2 $n \log n = \mathcal{O}(n^2)$ is correct.
 - : By the definition of \mathcal{O} -notations, the statement follows if $\log n = \mathcal{O}(n)$. Hence, if $\varepsilon = 1$ in the above lemme, it completes the proof.
- 3 $\sqrt{n} = \mathcal{O}(\log n)$ is incorrect.
 - For all constants c, d, and a sufficient large n, we show $\sqrt{n} > c \log n + d$.
 - ▶ By the above lemma, we have $n^{1/4} > \log n$ for a sufficient large n.
 - ▶ Similarly, for a sufficient large n, $\frac{n^{1/4}}{2} > c$ and $\frac{n^{1/2}}{2} > d$.
 - Finally, we have $\sqrt{n} = \frac{n^{1/4}}{2} \times n^{1/4} + \frac{n^{1/2}}{2} > c \log + d$, for a sufficient large n.

Solution

- For a positive constant c, we show $\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \leq cn^n$.
- ► Taking In for both sides, we have

$$\frac{\ln 2\pi n}{2} + n \ln n - n \ln e \quad \leq \quad n \ln n + \ln c$$

$$\ln n \quad \leq \quad 2n + 2 \ln c - \ln 2\pi.$$

▶ If $c = \sqrt{2\pi}$, then the statement follows for all $n \ge 1$.

