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Definition
f(n) = O(g(n)) ¢, d
n
f(n) <cg(n) +d
f(n) # O(g(n)) ; ¢, d
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Problem 1

Are the following claims correct? If it is correct, prove them. Otherwise,
disprove them.

@ n° =0(n?

@ nlogn = O(n?)

© n = O(logn)

@ According toe the Stirling's Formula, we know n! ~ v/2mn (2)" . Let f be
a function defined by f(n) = v27mn (%)" Then, f(n) = O(n™).

1222
“Theory of
Computation”

Report (4)

Problem 1



Problem 1 (Summary)

Are the following claims correct? If it is correct, prove them. Otherwise,
disprove them.

® O’ =0(n%)
A O nlogn = O(n?)
© x n=0(logn)

@ O According toe the Stirling's Formula, we know n! ~ v27n (2)™ . Let f
be a function defined by f(n) = v27n (2)". Then, f(n) = O(n").
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Warm-up: (Reviews on O-notation)

Definition
f(n) = O(g(n)) if and only if there exist constants ¢ and d such that

f(n) < cg(n) +d,

for any (positive) n.

Hence, to show f(n) # O(g(n)), we just prove that for all positive
constants ¢ and d, there exists (a sufficient large) no such that

f(no) > Cg(no) + d.
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Warm-up: (basic observations)

Lemma

For any positive constant € > 0, we have logn = O(n®).

Proof.

|
@ We show lim e
n—oo cnf +d

= 0, for any constants ¢,d > 0,

— im J®
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Solution

Solution

s1. 13

@ n° = O(n?) is correct.

If we take ¢ = 1 and d = 1, then we have n2 < n3, for any n.

® nlogn = O(n?) is correct.
By the definition of O-notations, the statement follows if logn = O(n).

H
© /n

>

> Similarly, for a sufficient large n,

ence, if e = 1 in the above lemme, it completes the proof.
= O(logn) is incorrect.

For all constants ¢, d, and a sufficient large n,
we show /1 > clogn + d.

1/4

By the above lemma, we have n*/* > logn for a sufficient large n.

7L1/2
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1/4
”2/ > ¢ and > d.

1

O

O

1/4 2 o5
Finally, we have \/n = % x nl/4 4+ % > clog +d, for a sufficient

large n.
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Solution 1.4

Prove v27mn (%)" = O(n™).
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Solution

» For a positive constant ¢, we show \/27n (%)" <ecn™.
» Taking In for both sides, we have

In27n
2

+nlnn—nlne < nlnn+Inc

Inn < 2n+2Inc—In2m7.

» |If ¢ = v/2m, then the statement follows for all n > 1.
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