I216 離散数学 (Discrete Mathematics) Report (2)

2007年度 II-1期(10,11月)

担当: 上原 隆平 (uehara@jaist.ac.jp)

出題 (Propose): 10月22日(月) (October 22 (Mon))

提出 (Deadline): 10月25日(木) 講義終了時 (October 25 (Thu), 10:50)

注意 (Note): レポートには氏名, 学生番号, 問題番号, 解答を, すべて手書きで書くこと. (Do not forget to handwrite your name, student ID, problem numbers, and answers on your report.)

Problem 1 (2 points): 上原君は,パスに良く似たバスという概念を次のように定義した.単純グラフG=(V,E) に対して,バス (e_1,e_2,e_3,\ldots,e_k) とは,各 $e_i\in E$ であり, $|e_i\cap e_{i+1}|=1$ を満たすとする.このとき,パスの集合 $\mathcal P$ とバスの集合 $\mathcal B$ の関係は次のどれが正しいか.理由とともに答えよ.(Uehara-kun defines a new notion "bass," which is similar to the notion "path," as follows: For a simple graph G=(V,E), a sequence of edges (e_1,e_2,e_3,\ldots,e_k) is called bass if $e_i\in E$ and $|e_i\cap e_{i+1}|=1$ for each i. Let $\mathcal P$ and $\mathcal B$ be sets of paths and basses, respectively. Then, which is the correct claim about the sets $\mathcal P$ and $\mathcal B$? Explain why.) (1) $\mathcal P=\mathcal B$. (2) $\mathcal P\subset\mathcal B$. (3) $\mathcal B\subset\mathcal P$. (4) $\mathcal P\setminus\mathcal B\neq\emptyset$ and $\mathcal B\setminus\mathcal P\neq\emptyset$.

[Note] $A \subset B$ は $A \subseteq B$ かつ $A \neq B$ の意味で使っている.また, $A \setminus B$ は次の定義で与えられる集合である. $A \setminus B = \{x \mid x \in A \text{ かつ } x \not\in B\}$ (" $A \subset B$ " means $A \subseteq B$ and $A \neq B$. " $A \setminus B$ " is defined by $A \setminus B = \{x \mid x \in A \text{ and } x \not\in B\}$.)

Problem 2 (3 points): 単純グラフG=(V,E) に対して,次数が奇数の頂点の集合を V_o ,次数が偶数の頂点の集合を V_e とする.このとき,次の条件を満たすグラフがあれば,実例を示し,ないならその理由を答えよ. $(1)\ |V_o|$ が奇数で $|V_e|$ が奇数. $(2)\ |V_o|$ が奇数で $|V_e|$ が偶数。 $(3)\ |V_o|$ が偶数で $|V_e|$ が奇数. $(4)\ |V_o|$ が偶数で $|V_e|$ が偶数.(For a simple graph G=(V,E), let V_o denote the set of vertices of odd degrees, and V_e denote the set of vertices of even degrees. Now, for each of following conditions, show an example that satisfies the condition, or explain why if such a graph does not exist. $(1)\ |V_o|$ is odd and $|V_e|$ is odd, $(2)\ |V_o|$ is odd and $|V_e|$ is even, $(3)\ |V_o|$ is even and $|V_e|$ is odd, $(4)\ |V_o|$ is even and $|V_e|$ is even.)

[Hint] やみくもにグラフを探す前に , $\sum_{v \in V} \deg(v) = 2|E|$ という公式の意味をよく考えよう . (Before checking many graphs, consider the equation $\sum_{v \in V} \deg(v) = 2|E|$ carefully.)

Problem 3 (5 points): 単純グラフG = (V, E)を木とする. 頂点に接続する辺が 1 本である頂点を 、その木の葉と呼ぶ、木 G には葉が 2 つ以上存在することを証明せよ . (Let G = (V, E) be a tree. A vertex of the tree is called a *leaf* if there exists only one edge incident to the vertex. Then, prove that G has at least two leaves.)

[Hint] 木の定義と同値な命題がいろいろあるが,ここでは「G=(V,E) が木なら,G は連結で|E|=|V|-1」を使うとよい.(As you know, there are many definitions (or equivalent claims) of the notion of a tree. Here, it is good to use the claim that "a simple graph G=(V,E) is a tree if G is connected and |E|=|V|-1.")